研究室紹介

~平澤研究室~

2006.7.11

平澤 茂一

[1] 情報 コンピュータ その1

- 情報基礎理論と応用 情報理論 文書・画像などの圧縮 (ファクシミリの圧縮技術)
 - ・ 携帯電話の音質向上

誤り訂正符号

- · CDのハイファイ化
- ・・ターボ符号,復号法
- メモリの高信頼化

[1] 情報 コンピュータ その2

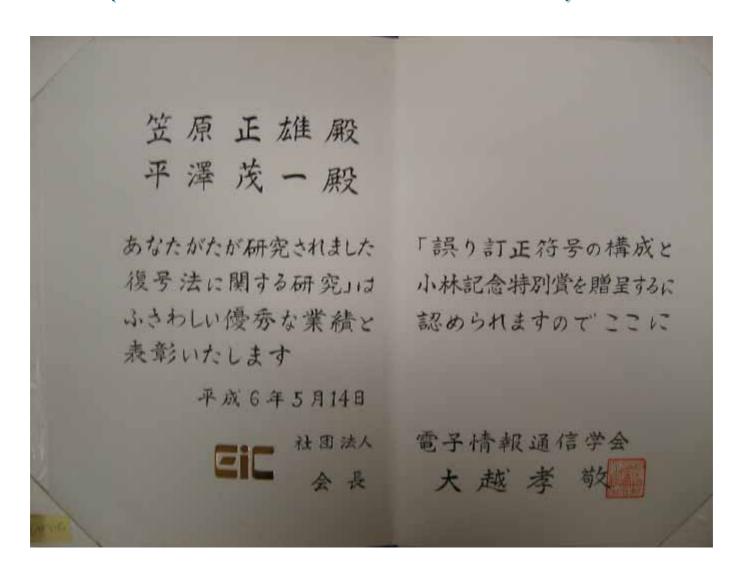
- 2. 知識・情報処理
 - データマイニング
 - ・POSデータからの知識発見
 - ・アンケートからの知識発見
 - ・アルゴリズム開発
 - テキストマイニングと情報検索
 - ・過去のカルテから患者の今後の病状を予測
 - ・柔らかい検索エンジン
 - ・Web検索
 - ・情報フィルタリング

機械学習

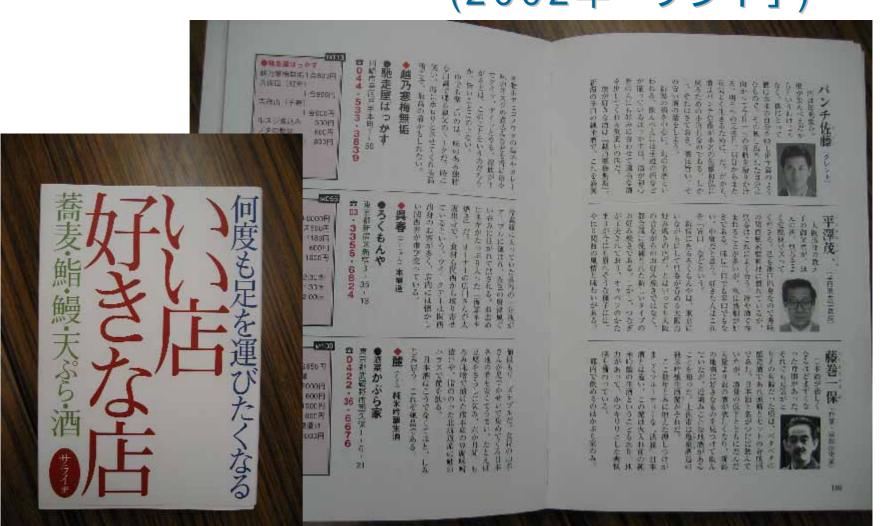
[2] 研究室は研究中心(遊ぶときは遊ぶ)

ドクター 4人 M2 10人 M1 3人 M0 3人

以上


誤り訂正アルゴリズムの論文発表(1975年)

NO SUCCESSION FF SIL-	A PREDICTOR OF DECEMBER SHEET CHARLES BY	
or can pulse order $r_{ij}(s)$ and $r_{ij}(s)$ can be done distributly on follows, where we assume $\deg r_{ij} = \deg r_{ij}$ and $\deg r_{ij} = \deg r_{ij}$ and $\deg r_{ij} = \deg r_{ij}$ and $\deg r_{ij} = \deg r_{ij} = \deg r_{ij}$.	We self $G_2(0)$ the multiplier proverginal for the polynomial $S_2(0)$ at the m_1 iteration. From this relation it is evident that $c_{-1}(x)$ this ket she polynomial $(1-44)^{-1}G_2(0)S_2(x) = c_1(x)$. Therefore we obtain the relation.	
14(1) = 0.1016(2) = 5.15 Aug 1	$s(s) = (-1)^{s} U_{s}(r_{s}(s) \mod r_{s}(s)) \qquad (9)$	
$r_{i,j}(s) + g_{ij}(s) e_{i,j}(s) + r_{ij}(s) deg e_{i+1} + deg g_{i} + deg e_{i+1} \cdot deg e_{i+1} \geq deg e_{i}$, (4)	We notice that this relegion is patternal epons boths are equation to be knowing. Goppa codes	
We mile give a constant polarismial and right a committee polyrizmial at the an account of a 1, 2, The division for minutes of the left treation when an account of a 1, 2, The division for a left treation when the alternative and the constant of the proof of	The other properties of Emil Pa agention that are achieved to the worked to solving the large equation for detailing Copper whose its immension large follows. From (8), it is obvious that	
1/10 = 0. The greatest common or the state of the state o	$digr_i \ll digr_{im}$ (16)	
The relation (4) can be store then in the metric facts as follows: $\binom{r_{s}(x)}{r_{s+1}(x)} = \binom{g_{s}(x)}{r_{s}(x)} \cdot \binom{g_{s}(x)}{r_{s}(x)}. \qquad (5)$	From (6), $\deg U_i = \sum_{j=1}^d \deg y_j$. Since $\deg r_{i+1} = \log r_{ij} = \sum_{j=1}^d \deg y_j$ from (4), this clear that	
Defining polynomials Con, and Fo(n) on California	$deg U_i = cog x_{ij} + cog x_{ij}, \qquad (1)$	
$U_i(s) = q_i(s) \dot{U}_{i+i}(s) - U_{i+i}(s)$ (8)	From (7), we obtain	
and $V_{AB} = q(s) V_{AB}(s) - V_{AB}(s)$.	$E_i(s) V_{i+1}(s) + U_{i+1}(s) V_i(s) = 1-10.$ (12)	
where $I(js)=I_s \mathcal{D}_{\gamma}(s)=0, \ \mathcal{D}_{\gamma}(s)=0$ and $V_{\gamma\gamma}(s)=I_s$ we have	'The polynomials E' ₂ (a) and P' ₂ (a) are proved relatively priors.	
$\begin{pmatrix} c_{1,0,0}^{*} & c_{1,-1}(s) \\ c_{2,0,0}^{*} & c_{1,-1}(s) \end{pmatrix} = \begin{pmatrix} c_{1,0}^{*} & b \\ 1 & c \end{pmatrix} \begin{pmatrix} a_{1,0}^{*} & b \\ 1 & c \end{pmatrix} \cdots \begin{pmatrix} b_{1,0}^{*}(s) & 1 \\ 1 & c \end{pmatrix} \begin{pmatrix} c_{1,0}^{*} & b \\ 1 & c \end{pmatrix}$ (7)	3. Alexander on Bulston the Key Registron	
From (5) and (7), we obtain:	We nonemarine on a problem of Edition.	
$\binom{r_{i+1}(s)}{r_{i+2}(s)} = \binom{C_i(s)}{r_{i+1}(s)} \cdot \binom{r_{i+1}(s)}{r_{i+2}(s)} \binom{c_{i+1}(s)}{r_{i+2}(s)}.$	Promition. Given the Coppupatymentally is of digree 2 to a Caracadorous polynomial S(a) of segret ≪ 20 which belongs to a set B. Sec. a pair all a	
The determinant of the matrix of the last- one side of (7) in (- 1). We have	racinic polynomial $s_i(x)$ or degree ∞ i and a polynomial $\psi_i(x)$ of altered ∞ i that are relatively priors and satisfy	
$\binom{r_{+}(\phi)}{r_{+}(\phi)} = (-1)^r \binom{F_{+}(\phi)}{r_{+}(\phi)} = \binom{F_{+}(\phi)}{2f_{+}(\phi)} \binom{r_{+}(\phi)}{r_{+}(\phi)}$,	$\gamma_i(s) \delta(s) = \gamma_i(s)$, $mod_i(s)$, (3.2)	
Thus the emointus polynomial of cyarctic Alabertation can be related to the polynomial of (a) an influence.	where the set E is defined at the set of $\sum_{i=1}^{p} f_i \sim 0.555$ excession preparation corresponding to error periods with the number of crosses around constraint.	
$v_i(s) = (i+1)^i - V_j(s) v_{i+1}(s) + U_j(s) v_i(s),$ (8)	Veren	


誤り訂正アルゴリズムのLSI化 ~ 音楽用CDプレーヤーに内蔵(1985年三菱電機製)

学会で受賞(1994年電子情報通信学会)

「呉春」に関する研究で論文発表 (2002年「サライ」)

研究室紹介 平澤研究室

学生の立場から

平澤研D5 石田 崇

はじめに!! 【超重要】

研究室選びの際の注意事項

「コンピュータ工学」のことは忘れる!

平澤研究室とは? - 情報数理応用研究 -

ひらさわ しげいち

■ 先生 ---- 平澤 茂一 先生

■ 学生の構成

□ドクター : 4名

□修士2年 :10名

□修士1年 : 3名

□学部4年以上:13名 → +学部3年10名程度

■ 特徴

- □活気がある,仲がいい.人間関係を大切に.
- □メリハリがある.~遊びは楽しく,研究には厳しく~

計30名

□ 自主管理.~全ては自分次第~

研究テーマ ~ 情報数理応用研究~

「情報」を数理モデルとして捉える (情報理論,確率・統計学)

- 情報理論 情報のモデル化と解析
 - □ 効率性 ・・・ 情報源符号化,テキスト圧縮,画像符号化
 - □ 信頼性・・・ 通信路符号化,誤り訂正
 - □ 安全性・・・ 暗号理論,情報セキュリティ
- 情報検索、データマイニング
 - 大規模データからの知識発見
 - □ 相関ルール抽出
 - □ 文書自動分類
 - □ 自然言語処理
 - □ テキストマイニング,WEBマイニング
 - □ 文書検索,マルチメディア検索

研究室の流れ

	基礎知識を増やす
学部 3 年	研究テーマの調査
	□ 毎週のゼミ~情報理論入門(教科書の輪講)
	□ 解説論文による分野の調査
	卒業研究
学 郊 4 年	□ 週ゼミ,テーマ別ゼミ
	□ 春・夏・冬合宿(卒論へ向けて論文を読む)
	□卒論発表~卒業~進学・就職
修士1年	研究の展開
	□ 学会発表デビュー
	□ 後輩の指導,テーマ別ゼミ
修士2年	修論~研究の集大成
	□ 2 度目の学会発表
	□ 夏・冬合宿(修論へ向けて研究の進捗報告)
	□ 修論発表~卒業

研究室卒業後の進路

■ 主な就職先(ここ数年の一部)

キヤノン,日立,東芝,松下電器, NTTデータ,NTTドコモ,日本ユニシス, 野村総研,東京三菱銀行,野村證券, HONDA,任天堂,日本テレビ,読売新聞,岡村製作所, 進学

■ 職種

SE,研究開発が多数.

研究室選びについてのアドバイス

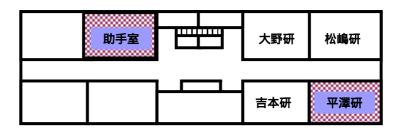
- 先生を知ろう!
 - □ 授業のときのイメージに縛られない.
- 研究テーマを知ろう!
 - □ 授業科目とは切り離す.
- 雰囲気を知るう!
 - □ これからの大学生活を過ごす場.
- メンバーを知ろう!
 - □ 先輩・同期など、今後一生のお付き合い、

実際に研究室に足を運んでみよう!

さらに情報がほしい場合は・・・

• 平澤研究室ホームページ

http://www.hirasa.mgmt.waseda.ac.jp/


• 連絡先

経営システム工学科助手 平澤研究室 博士課程 石田崇

t.ishida@aoni.waseda.jp

• 直接話を聞きたい人は

51号館15階 平澤研 or 経営助手室へ

