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An Efficient Heuristic Search Method for Maximum

Likelihood Decoding of Linear Block Codes

Using Dual Codes

Tomotsugu OKADA†∗a), Nonmember, Manabu KOBAYASHI†, Regular Member,
and Shigeichi HIRASAWA†, Fellow

SUMMARY Y.S. Han et al. have proposed an efficient max-
imum likelihood decoding (MLD) algorithm using A* algorithm
which is the graph search method. In this paper, we propose
a new MLD algorithm for linear block codes. The MLD algo-
rithm proposed in this paper improves that given by Han et al.
utilizing codewords of dual codes. This scheme reduces the num-
ber of generated codewords in the MLD algorithm. We show
that the complexity of the proposed decoding algorithm is re-
duced compared to that given by Han et al. without increasing
the probability of decoding error.
key words: block codes, soft decision, maximum likelihood de-

coding, A* algorithm, dual codes

1. Introduction

Soft decision decoding can pull out more capable of
error correction than hard decision decoding. Espe-
cially, maximum likelihood decoding (MLD) is the best
method in the sense of minimizing the probability of de-
coding error when all codewords have equal probability
to be transmitted. However, since the complexity re-
quired for performing MLD is impractically large, many
researchers have been studying to develop methods for
reducing it [2]–[4], [7].

Y.S. Han et al. have proposed an efficient MLD
algorithm using A* algorithm [6] which is the graph
search method [3]. Hereafter, we call the decoding al-
gorithm given by Han et al. A* decoding algorithm.
At low SNR, for moderate code rates and long code
lengths, however, the complexity required for perform-
ing MLD is still impractically large.

In this paper, we propose a new MLD algorithm
for linear block codes. Our MLD algorithm improves
A* decoding algorithm by utilizing codewords of dual
codes. This scheme reduces the number of generated
codewords in the MLD algorithm. We show that the
complexity of the proposed decoding method is reduced
compared to A* decoding algorithm maintaining the
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probability of decoding error of MLD.
This paper is organized as follows. In Sect. 2, we

describe the method for MLD. In Sect. 3, A* decoding
algorithm is briefly reviewed. In Sect. 4, we propose a
new heuristic function. Simulation results are presented
in Sect. 5 and concluding remarks are given in Sect. 6.

2. Preliminary

Let C be a binary (n, k, d) block code of length n,
the number of information symbols k, and minimum
distance d with generator matrix G. A codeword
c = (c1,c2,. . .,cn) of C is transmitted over the ad-
ditive white Gaussian noise (AWGN) channel. Let
r = (r1,r2,. . .,rn),ri ∈ R, denote a received vector.
We now define the bit log-likelihood ratio of ri as
φi = ln Pr(ri|0)

Pr(ri|1) . The soft decision decoder estimates
the transmitted codeword from φ= (φ1,φ2,. . .,φn) and
a hard decision vector z = (z1,z2,. . .,zn), where zi is
defined as follows:

zi =
{

0, φi ≥ 0,
1, φi < 0. (1)

At first, the soft decision decoder obtains the k
most reliable and linearly independent columns (Most
Reliable Independent Positions:MRIPs) of generator
matrix G from φ. Secondly, the vector φ̃ is obtained
from φ in such that the k MRIPs are re-ordered in
the order of decreasing value and other n − k posi-
tions are re-ordered in the same manner behind the
k MRIPs. That is, for 1≤ i < j ≤ k, |φ̃i| ≥ |φ̃j |, and
for k + 1 ≤ i′ < j′ ≤ n, |φ̃i′ | ≥ |φ̃j′ |. The vector z̃ and
the code C̃ are obtained by permuting the positions
of z and C, respectively corresponding to the above re-
order. Let G̃ be a generator matrix of C̃ whose leftmost
k columns form the k × k identity matrix.

For any x ∈ {0, 1}n, we define the reliability loss
of x as

L(x) =
∑

i|z̃i �=xi

|φ̃i|. (2)

Then, the most likely codeword c̃∗ of C̃ satisfies
L(c̃∗) = minc̃∈C̃ L(c̃).
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3. A Review of A* Decoding Algorithm [3]

The A* decoding algorithm searches the most likely
codeword through the graph of C̃ using A* algorithm.

The initial codeword c̃0 is obtained as follows. We
define ũ = (ũ1, ũ2, . . . , ũk) ∈ {0, 1}k as the leftmost k
symbols of z̃, and c̃0 can be obtained by encoding ũ
with G̃, i.e. c̃0 = ũG̃.

We define the depth of the start node S as 0. We
should notice that the graph of C̃ is a binary code tree
by depth k since the first k positions are the k MRIPs.

We define the minimum cost g(m) from S to a node
m of depth t as

g(m) =
t∑

i=1

|φ̃i|(v̄i ⊕ z̃i), (3)

where v̄1, v̄2, . . . , v̄t are the labels of the path from S to
m, and ⊕ represents exclusive OR operator.

Let HW = {wi|0 ≤ i ≤ I(≤ n)} be the set of
all distinct Hamming weights that codewords of C may
have, and assume 0 = w0 < w1 < · · · < wI ≤ n. From
the linear property of C̃, the Hamming distance dH(·, ·)
between any two codewords of C̃ must belong to HW .
We now give the seed codeword c̃s and let the set T (m)
denote as follows:

T (m) = {v|v = (v̄1, v̄2,· · ·, v̄t, vt+1,· · ·, vn)
and dH(v, c̃s) ∈ HW }, (4)

where vi ∈ {0, 1} for i = t+1, t+2, . . . , n. Furthermore,
we denote the heuristic function ĥ(m) as follows.

ĥ(m) = min
v∈T (m)

{ n∑
i=t+1

|φ̃i|(vi ⊕ z̃i)
}

.

(5)

In A* algorithm, we expand the node in the in-
creasing order of the estimate function f̂(m) = g(m) +
ĥ(m). Note that the heuristic function satisfies the con-
dition to find the optimal path since for any node m,
ĥ(m) ≤ h∗(m) holds, where h∗(m) is the actual cost
of a minimum cost path from node m to the goal node
of depth n. That is, the most likely codeword must
be found by using A* algorithm with f̂(·) through the
graph of C̃.

The decoding algorithm can be stopped at any
time that we obtain the codeword c�=(c�1,c�2,· · ·,c�n)
which satisfies the following criterion.

Criterion 1: If

ĥ(S) =
n∑

i=1

|φ̃i|(c�i ⊕ z̃i) = L(c�), (6)

then c� is the most likely codeword, where ĥ(S) is cal-
culated with respect to the seed c�.

We should notice that this criterion is equivalent to
the acceptance criterion for the most likely codewords
in [8]. ✷

In A* decoding algorithm, we assume that the list
OPEN stores the nodes expanded so far in the increas-
ing order of the estimate function f̂(·). Let L denote
the minimum reliability loss of the codeword generated
so far.
[A* decoding algorithm]

1) Generate the initial codeword c̃0 := ũG̃. We set
c̃∗ := c̃0; c̃s := c̃0; L := L(c̃0); OPEN = {S}．

2) If c̃∗ satisfies (6), then output the codeword c̃∗ and
finish.

3) Pop the top node N in OPEN．If the depth ! of N
is n, then output the codeword c̃∗ and finish．

4) If ! < k，then we expand N to the successor node
N0 whose label v̄�+1 = 0. Calculate ĝ(N0) and ĥ(N0)
by (3) and (5), respectively. Furthermore, calculate
f̂(N0) := ĝ(N0) + ĥ(N0) and push (insert) N0 to
OPEN . And, for another successor N1 whose label
v̄�+1 = 1, we also calculate f̂(N1) and push N1 to
OPEN，then go to 3).

5) If ! = k, then generate the codeword c̃ by using the
labels v̄1, v̄2, . . . , v̄k and G̃. If L(c̃) ≤ L, then update
L := L(c̃) and c̃∗ := c̃ and push the goal node M
(depth n) corresponding to c̃ to OPEN and go to
2), otherwise go to 3). ✷

Thus A* decoding algorithm performs MLD. It is
important to notice that the seed cs does not need to
be fixed during the decoding of φ̃. When the seed
is changed, we do not recalculate heuristic functions
with respect to the new seed for every node in the
list OPEN . When the seed is allowed to change,
we call this algorithm an adaptive procedure. Even
though we implement the adaptive procedure, this pro-
cedure guarantees to find the most likely codeword since
ĥ(m) ≤ h∗(m) holds for any node m.

We now discuss the time complexity of A* decod-
ing algorithm. To permute the reliability vector re-
quires computational complexity of O(n logn) and to
construct G̃ from G, that of O(n ×min{k2, (n − k)2})
[2], [3]. Note that these procedures are carried out only
once for each decoding. On the contrary to them, step
5) (encoding) and step 4) (calculation a heuristic func-
tion) can be processed iteratively depending on the sig-
nal to noise ratio of the channel. The time complexity
of encoding is O(n × k) and that of calculation for a
heuristic function is O(n). Hence the time complex-
ity of this decoding algorithm is O(nk ×N(φ)), where
N(φ) is the number of generated codewords during the
decoding of φ. The space complexity of this algorithm
is O(n×M(φ)), where M(φ) is the maximum number
of nodes stored in the list OPEN during the decoding
of φ.
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4. Proposed Heuristic Function

In this section, we propose a new heuristic function
using a codeword of the dual code.

The A* algorithm has the important property on
the efficiency of the algorithm [6].

Lemma 1 ([6]): Let A1 and A2 be A* algorithm
whose heuristic functions are ĥ1(·) and ĥ2(·), respec-
tively. For any node m, if ĥ1(m) ≤ ĥ2(m), then the
number of nodes expanded by A1 are no less than that
by A2. ✷

Let C̃⊥ be a dual code of C̃. Any codeword c̃ ∈ C̃
and any codeword c̃⊥ ∈ C̃⊥ satisfy c̃·c̃⊥ = 0, where ”·“
represents inner product. By utilizing this property, we
can improve a heuristic function. Given a codeword c̃⊥

in C̃⊥, for any node m, we denote the set Tp(m) as

Tp(m) = {v|v = (v̄1, v̄2,· · ·, v̄t, vt+1,· · ·, vn),
dH(v, c̃s) ∈ HW , and v · c̃⊥ = 0}. (7)

Tp(m) ⊆ T (m) holds for any node m since Tp(m) is a
more stringent set than T (m). Furthermore, by utiliz-
ing Tp(m), we propose a new heuristic function ĥp(m)
as

ĥp(m) = min
v∈Tp(m)

{ n∑
i=t+1

|φ̃i|(vi ⊕ z̃i)
}

.

(8)

The decoding algorithm can also be stopped
at any time when we obtain the codeword c� =
(c�1, c�2, · · · , c�n) which satisfies the following criterion.

Criterion 2: If

ĥp(S) =
n∑

i=1

|φ̃i|(c�i ⊕ z̃i) = L(c�), (9)

where ĥp(S) is calculated with respect to the seed c�,
then c� is the most likely codeword. ✷

Hereafter, we call A* decoding algorithm using the
proposed heuristic function ĥp(m) proposed decoding al-
gorithm.

We should notice that ĥ(m) ≤ ĥp(m) ≤ h∗(m)
since T (m) ⊇ Tp(m) ⊇ C(m), where C(m) is a set
of codewords passing through node m. Hence, in case
that we do not use the stopping criterion at the step
2), Lemma 1 and this property lead to the following
theorem without proof.

Theorem 1: The proposed decoding algorithm does
not expand more nodes than A* decoding algorithm
does. Furthermore, The number of encoding during
the proposed decoding method are no more than the
number of generated codewords during A* decoding al-
gorithm. ✷

When we use the stopping criterion and we imple-
ment the adaptive procedure, we cannot theoretically
ensure that the proposed decoding algorithm is supe-
rior to the original A* decoding algorithm. However, in
these conditions, we may anticipate that the proposed
decoding algorithm is more efficient than the original
A* decoding algorithm in almost all cases. The reason
is that the proposed decoding algorithm tends to visit
the most likely codeword faster than the original A*
decoding algorithm does.

5. Simulation Results

In this section, we present simulation results for the
(104,52,20) binary extended quadratic residue (QR)
code and the (128,64,22) binary extended BCH code.
We assume that these codes are transmitted over the
AWGN channel with antipodal signaling. That is,
the ith signal (i = 1,2, · · ·, n) of the transmitted
codeword c and received vector r are (−1)ci

√
Es and

ri = (−1)ci
√
Es + ei, where Es is the signal energy

per channel bit and σ2(ei) = N0/2 is the double-sided
noise spectral density. The signal to noise ratio (SNR)
for the channel is γ = Es/N0 and the SNR per trans-
mitted information bit is γb = γ · n/k. For the AWGN
channel, we have φi = 2ri

σ2(ei)
, so we can substitute r for

φ in our simulation.
For the (128,64) code, HW is {x|(x = 0) or (x

is even and 22 ≤ x ≤ 106) or (x = 128)} [1]. We
do not know HW exactly for the (104,52) code, so we
use a superset for this. For this code, we know that
d = 20 and the Hamming weight of any codeword is
divisible by 4 [5]. Hence, the superset used is {x|(x =
0) or (x is divisible by 4 and 20 ≤ x ≤ 84) or (x =
104)}.

Firstly, we analyze which codewords in C̃⊥ has the
strong influence to make the algorithm efficient. We
examined 10000 samples for the (15,7,5)BCH codes in
the following way. Given the received vector r, for each
node, we calculate 2n−k heuristic functions from the all
codewords in C̃⊥ and find the codeword in C̃⊥ which
makes the value of the heuristic function the closest to
the actual cost for that node. For each node, we find
such codeword. Table 1 shows 5 codewords which have
the greatest influence on the efficiency of the algorithm
for each SNR. In this table, the numbers from 0 to 255
stand for the index of codewords in C̃⊥, e.g. 128 repre-
sents c̃⊥128 = (c̃⊥128,1, c̃

⊥
128,2, · · · , c̃⊥128,7, 10000000) ∈ C̃⊥

where c̃⊥128,i ∈ {0, 1} (i=1,2,· · ·,k) and 8 represents
c̃⊥8 = (c̃⊥8,1, c̃⊥8,2, · · · , c̃⊥8,7, 00001000) ∈ C̃⊥ where c̃⊥8,i
∈ {0, 1} (i=1,2,· · ·,k). These codewords are obtained
in the following way. Firstly, a parity check matrix H̃
of the form [AT |In−k], where In−k is the (n−k)×(n−k)
identity matrix and A is obtained from G̃ of the form
[Ik|A]. Secondly, c̃⊥128 and c̃⊥8 are generated by multi-
plication of n− k tuples (10000000) and of (00001000)
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Table 1 The analysis of the codewords in dual codes for the
(15,7) codes.

γb[dB] 1 2 3 4 5

4.0 index 128 64 32 1 16

rate[%] 39.7 18.1 8.7 5.8 4.7

3.0 index 128 64 32 16 1

rate[%] 41.2 19.2 9.5 5.2 4.5

2.0 index 128 64 32 16 1

rate[%] 42.7 20.3 10.3 5.7 3.5

1.0 index 128 64 32 16 8

rate[%] 43.9 21.3 10.9 6.0 3.5

0.0 index 128 64 32 16 8

rate[%] 45.0 22.1 11.4 6.2 3.6

Table 2 Simulation results for the (128,64) codes.

γb[dB] Original A* Proposed α Proposed β

6.00 ave C(r) 1.01 9.85× 10−1 9.85× 10−1

N(r) 2.03 1.47 1.44

M(r) 8.75× 10−1 6.49× 10−1 6.40× 10−1

max M(r) 1659 868 980

5.50 ave C(r) 1.19 1.10 1.10

N(r) 6.77 4.77 4.68

M(r) 2.25 1.62 1.60

max M(r) 2359 1293 1548

5.00 ave C(r) 4.10 2.68 2.70

N(r) 7.20× 101 4.30× 101 4.37× 101
M(r) 9.29 5.58 6.01

max M(r) 10658 4235 4867

4.50 ave C(r) 7.93× 101 4.53× 101 4.51× 101
N(r) 1.32× 103 7.69× 102 7.65× 102
M(r) 8.47× 101 3.67× 101 3.85× 101

max M(r) 189263 81703 94744

by H̃ , respectively. In this table, the rate represents
the proportion of the number of the nodes for the most
influenct codeword on the efficiency of the algorithm to
the number of all nodes in percentage terms. If defer-
ent indeces have the same value of heuristic functions,
then in such indeces, we count one index whose binary
representation has the less Hamming weights. Table 1
shows that c⊥128 may be the best codeword in C̃⊥.

Next, we compare the proposed decoding algo-
rithm with the original A* docoding algorithm [3].
From table 1 in the proposed decoding algorithm, c̃⊥α =
(c̃⊥α,1, c̃

⊥
α,2, · · · , c̃⊥α,k, 100 · · · 00) and c̃⊥β = (c̃⊥β,1, c̃

⊥
β,2, · · · ,

c̃⊥β,k, 010 · · · 00) may be the best codeword and the sec-
ond codeword in C̃⊥, respectively. So, we simulated two
versions α and β of the proposed decoding algorithm.
The version α utilized c̃⊥α as the codeword of the dual
code, and the version β utilized c̃⊥β as the codeword of
the dual code. Table 2 and Table 3 show the simulation
results for the (128,64) code and for the (104,52) code,
respectively. These results were obtained by simulating
10000 samples for each SNR. In these simulations, we

Table 3 Simulation results for the (104,52) codes.

γb[dB] Original A* Proposed α Proposed β

6.00 ave C(r) 9.54× 10−1 9.37× 10−1 9.34× 10−1

N(r) 1.08 7.70× 10−1 7.70× 10−1

M(r) 4.74× 10−1 3.45× 10−1 3.49× 10−1

max M(r) 1044 499 610

5.50 ave C(r) 1.09 1.02 1.02

N(r) 3.50 2.36 2.48

M(r) 1.18 8.53× 10−1 8.77× 10−1

max M(r) 1504 738 990

5.00 ave C(r) 1.95 1.52 1.53

N(r) 2.21× 101 1.39× 101 1.43× 101
M(r) 4.40 2.88 3.04

max M(r) 3012 1749 1919

4.50 ave C(r) 1.58× 101 9.52 9.53

N(r) 2.30× 102 1.40× 102 1.40× 102
M(r) 1.93× 101 9.57 1.05× 101

max M(r) 29112 10246 11934

implemented the adaptive procedure and the seed was
updated according to the rule in [3].

In these tables, the following notations are used.

N(r): the number of nodes visited during the de-
coding of r.

C(r): the number of codewords generated during
the decoding of r.

M(r): the maximum number of nodes stored on
list OPEN during the decoding of r.

max: the maximum value among 10000 samples.
ave: the average value among 10000 samples.

Simulation results show that the proposed decod-
ing algorithm reduced the number of generated code-
words, visited nodes and stored nodes, especially at the
low SNR. Furthermore, the version α is more efficient
than the version β.

6. Concluding Remarks

We have proposed a new soft-decision MLD algorithm,
which is superior to original A* decoding algorithm [3]
as stated in Sect. 3.

This approach is applicable to any linear block
codes. Furthermore, it is able to combine with other
decoding method [2], [7]. Our algorithm can easily be
converted into various suboptimal procedures.

The theoretical analysis on a method for selecting
the codeword of the dual code which is the best for im-
provement of the efficiency will be remained as a further
research.
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