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SUMMARY Several reliability based code search algorithms
for maximum likelihood decoding have been proposed. These
algorithms search the most likely codeword, using the most re-
liable information set where the leftmost k (the dimension of
code) columns of generator matrix are the most reliable and lin-
early independent. Especially, D. Gazelle and J. Snyders have
proposed an efficient decoding algorithm and this algorithm re-
quires small number of candidate codewords to find out the most
likely codeword. In this paper, we propose new efficient methods
for both generating candidate codewords and computing metrics
of candidate codewords to obtain the most likely codeword at the
decoder. The candidate codewords constructed by the proposed
method are identical those in the decoding algorithm of Gazelle
et al. Consequently, the proposed decoding algorithm reduces the
time complexity in total, compared to the decoding algorithm of
Gazelle et al. without the degradation in error performance.
key words: maximum likelihood decoding, information set de-
coding, most reliable basis, reliability measure, linear block codes

1. Introduction

Soft decision decoding for linear block codes reduces the
block error probability by taking advantage of channel
measurement information, compared with conventional
hard decision decoding. Particularly, maximum likeli-
hood decoding (MLD) achieves the best error perfor-
mance when each codeword has the equal probability
to be transmitted. Since maximum likelihood (ML) de-
coder rapidly becomes too complex to implement as the
code length becomes large, many researchers have been
devoted to develop new decoding algorithms to reduce
the time and space complexity of MLD.

There are, in general, two types of efficient MLD
algorithms. The first type is trellis-based MLD algo-
rithm such as the Viterbi algorithm [1] or recursive
MLD (RMLD) algorithm [2]. Trellis-based MLD al-
gorithms are “breadth-first” search algorithm [3] which
reduces the maximum number of computations. For
longer and medium to high rate codes, however, the
space complexity, O(2k), is large where k represents the
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dimension of code. The second type of efficient MLD
algorithms is “depth-first” search algorithm [3] which
iteratively generate candidate codewords. The decod-
ing algorithms of this type reduce the average number
of computations and they are known to be efficient at
moderate or high signal to noise ratio (SNR) with small
space complexity. In this paper, we focus on the second
type of MLD algorithms.

Some of the optimal and sub-optimal MLD algo-
rithms of the second type are called the reliability-based
ordered information set decoding algorithms which use
the most reliable basis (MRB) [3]–[8]. The MRB based
information set decoding algorithms reduce the time
complexity as well as the space one.

D. Gazelle and J. Snyders have proposed a de-
coding algorithm which effectively generates candidate
codewords for the ML codeword based on the MRB [4].
Hereafter, we will call this algorithm the GS decoding
algorithm. This algorithm effectively eliminates unnec-
essary candidate codewords. Consequently, the GS de-
coding algorithm requires smaller number of candidate
codewords than that of other MRB based MLD algo-
rithms with small space complexity. At low SNR, for
moderate code rates and large code lengths, however,
the time complexity required for performing MLD is
still impractically large.

In this paper, first we propose a new method for
constructing candidate codewords by exploiting code-
words constructed so far and the generating rule of can-
didate codewords. This method reduces the time com-
plexity to construct a candidate codeword from O(kn)
to O(n), where n represents the code length. Based
on the same approach as the above method, we derive
an effective method for computing metrics of candidate
codewords. Next, we present the proposed decoding al-
gorithm, which is an improved version of GS decoding
algorithm, by employing these methods. Consequently,
we show the proposed decoding algorithm reduces the
time complexity of the GS decoding algorithm, while
the proposed algorithm maintains the best error per-
formance.

This paper is organized as follows. In Sect. 2, we
describe the MRB based MLD algorithm as a prelim-
inary. In Sect. 3, we briefly review the GS decoding
algorithm. In Sect. 4, we propose a computationally
efficient method for constructing candidate codewords
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and present a new MLD algorithm. Finally, some sim-
ulation results are presented in Sect. 5 and concluding
remarks are given in Sect. 6.

2. The MRB Based MLD Algorithm

Let C be a binary linear (n, k, d) block code of length
n, dimension k and minimum distance d. Let G be
the generator matrix of C. Assume that each code-
word c = (c1, c2, · · · , cn) ∈ C has the equal probability
to be transmitted through the Additive White Gaus-
sian Noise (AWGN) channel of the signal to noise ratio
Eb/N0. The detector projects the received sequence
r = (r1, r2, · · · , rn) ∈ Rn into the reliability sequence
θ = (θ1, θ2, · · · , θn), where θj = ln P (rj|cj=0)

P (rj|cj=1)
, j =

1, 2, · · · , n, and inputs θ into the decoder. The decoder
estimates a transmitted codeword from both θ and the
hard decision received sequence z = (z1, z2, · · · , zn) ∈
{0, 1}n from θ where

zj =
{
0, if θj ≥ 0;
1, otherwise. (1)

An error probability of zj , P (zj �= cj |rj), is smaller as
the value |θj |, j = 1, 2, · · · , n, becomes larger. There-
fore, we call |θj | reliability measure.

For any n-tuple x = (x1, x2, · · · , xn) ∈ {0, 1}n, let
L(x, z,θ) be the function of the reliability loss with
respect to z, defined as

L(x, z,θ) =
n∑

j=1

(xj ⊕ zj)|θj |, (2)

where ⊕ represents the exclusive OR operator. We will
use L(x) in place of L(x, z,θ) for simplicity if we can
fix z and θ from the context. Then the ML codeword
cML ∈ C satisfies L(cML) = minc∈C L(c) [10], [11].

At first, the MRB based decoder reorders columns
of generator matrix G in the nonincreasing order of
reliability measure. We denote the resultant generator
matrix by Ḡ. Let C̄ be the code generated by Ḡ. Define
that θ̄ and z̄ are the ordered sequences of θ and z,
respectively, in the same ordering of columns of Ḡ, i.e.,
|θ̄j1 | ≥ |θ̄j2 |, 1 ≤ j1 < j2 ≤ n. This reordering defines a
permutation function λ1 such as θ̄ = λ1(θ).

Furthermore, columns of Ḡ are permuted so that
the leftmost k columns are the most reliable and linearly
independent (MRI). MRI columns are linearly indepen-
dent k columns of generator matrix whose reliabilities
are the largest among any other linearly independent k
columns. For the resultant matrix, the leftmost k × k
matrix is rearranged to be the identity matrix by the
standard row operations. This identity matrix forms
MRB. The resultant generator matrix with MRB is
denoted by G̃. The bit positions of θ̄ and z̄ are re-
ordered to be θ̃ and z̃, respectively, in the same reorder-
ing manner of columns of G̃. Note that |θ̃j | ≥ |θ̃j+1|,

1 ≤ j ≤ k − 1, and |θ̃j′ | ≥ |θ̃j′+1|, k + 1 ≤ j′ ≤ n − 1.
This reordering defines a second permutation function
λ2 such that θ̃ = λ2(θ̄). Let C̃ denote the code gener-
ated by G̃, which is equivalent to C.

Define that u = (u1, u2, · · · , uk) ∈ {0, 1}k consists
of MRI symbols of z̃ = (z̃1, z̃2, · · · , z̃n). i.e., uj = z̃j ,
j = 1, 2, · · · , k. u is regarded as an information se-
quence and the decoder generates the initial candidate
codeword c̃0 = uG̃. Remark that c̃0 is the ML code-
word if c̃0 = z̃ [9], [10]. If L(c̃0) > 0†, the decoder
iteratively constructs candidate codewords by G̃ and
searches the ML codeword which minimizes the relia-
bility loss. The decoder outputs the ML codeword as
the estimated codeword at the end of decoding proce-
dure.

3. A Brief Review of the GS Decoding Algo-
rithm

In this section, we review the GS decoding algorithm,
which effectively generates candidate codewords [4].

Definition 1: Define κ = min{k, n − k − 1} and let
wH(x) denote the Hamming weight of a vector x. For
l = 1, 2, · · · , κ, let Tl = {t ∈ {0, 1}k|wH(t) = l} be the
set of test error patterns with the Hamming weight l.
We call w̃ = tG̃, t ∈ Tl, test error codewords. Then the
candidate codeword c̃ is denoted by c̃ = c̃0 ⊕ w̃. ✷

The GS decoder processes Tl in increasing order of
l. The processing of Tl is referred to as phase-l repro-
cessing. This terminology is given in [5], [6].

In phase-l reprocessing, l = 1, 2, · · · , κ, a test er-
ror pattern ti = (ti,1, ti,2, · · · , ti,k), i = 1, 2, · · · ,

(
k
l

)
, is

generated in the increasing order of standard binary
representation, i.e., the inequality

∑k
j=1 tp,j2k−j <∑k

j=1 tq,j2k−j holds for arbitrary pairs tp, tq ∈ Tl,
1 ≤ p < q ≤

(
k
l

)
.

In phase-l reprocessing, a test error pattern ti, i >
1, is generated from ti−1 in the following manner. First,
let the topmost element of Tl be t1 = (0k−l, 1l) where
(0α, 1β) ∈ {0, 1}α+β consists of α consecutive 0’s and β

consecutive 1’s. For i = 2, 3, · · · ,
(
k
l

)
, we find the right-

most bit position J such that (ti−1,J , ti−1,J+1) = (0, 1),
i.e., J = max{j| (ti−1,j , ti−1,j+1) = (0, 1)}. Then we set
(ti,1, ti,2, · · · , ti,J−1) = (ti−1,1, ti−1,2, · · · , ti−1,J−1) and
replace the subsequence (ti−1,J , ti−1,J+1) = (0, 1) with
(ti,J , ti,J+1) = (1, 0). Afterwards, ti can be obtained
by setting (0α, 1β) at the next positions of J +1 where
β is determined to satisfy wH(ti) = l. That means
we set (ti,J+2, ti,J+3, · · · , ti,k) = (0α, 1β). Hereafter we
will call this method, which generates ti from ti−1, the
generation rule A.

†If we can fix x̃ = λ2(λ1(x)) and θ̃ from the context, we

will denote L(x̃, z̃, θ̃) by L(x̃) for simplicity. Remark that

L(x̃, z̃, θ̃) = L(x, z, θ) from the property of AWGN.
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During decoding procedure, the decoder iteratively
constructs a test error codeword w̃i = tiG̃. The de-
coder searches the test error codeword w̃ML which sat-
isfies c̃ML = c̃0⊕w̃ML, where c̃ML is the ML codeword.

We here define the set of codewords C̃l,s such that
C̃l,s includes all generated candidate codewords c̃i =
c̃0 ⊕ w̃i before generating a test error pattern ts ∈ Tl,
i.e.,

C̃l,s={c̃0}

∪
l−1⋃
j=1

{
c̃i= c̃0⊕w̃i

∣∣∣∣w̃i=tiG̃, ti∈Tj ,i=1, 2, · · ·,
(
k

j

)}

∪{c̃i= c̃0⊕w̃i|w̃i=tiG̃, ti ∈ Tl, i=1,2,· · · ,s−1}. (3)

Let Ll,s be the minimum value of the reliability loss
in C̃l,s, i.e., Ll,s = minc̃∈C̃l,s

L(c̃). For ti, let ∆(ti) =∑k
j=1 ti,j |θ̃j | denote the reliability loss with respect to

u. In phase-l reprocessing, ti needs not to be encoded
if ti ∈ Tl satisfies the following inequality†:

Ll,i ≤ ∆(ti). (4)

It is because a candidate codeword c̃i = c̃0 ⊕ w̃i, w̃i =
tiG̃, always satisfies ∆(ti) ≤ L(c̃i).

The GS decoding algorithm effectively eliminates
some test error patterns that successively satisfy
Eq. (4). Let tp be the last generated test error pat-
tern before generating ti and we assume that Eq. (4)
holds for ti. Then the next test error pattern ts is gen-
erated in the following manner. First, find the bit po-
sition I satisfying (tp,I , tp,I+1) = (0, 1) and (ti,I , ti,I+1)
= (1, 0). We here consider the temporary test error
pattern t̂ = (t̂1, t̂2, · · · , t̂k) as

t̂j =
{

ti,j , for 1 ≤ j ≤ I − 1;
0, for I ≤ j ≤ k. (5)

If wH(t̂) = 0, eliminate the rest of elements in Tl. Oth-
erwise ts is obtained by replacing the rightmost sub-
sequence (0, 1) in t̂ with (1, 0) and setting (0α, 1β) at
the next positions of this subsequence (1, 0), where β
is determined to satisfy wH(ts) = l [4]††. Hereafter we
will call this method, which generates ts from ti and
tp, the generation rule B.

Lemma 1 ([4]): Assume that ti satisfies Eq. (4) and
ts is generated by the generation rule B. If there exists
s′, i < s′ < s, then

∆(ts′) ≥ ∆(ti) ≥ Ll,i = Ll,s′ . (6)

Since ∆(ts′) ≥ Ll,s′ , such ts′ needs not to be encoded.
✷

Example 1: In phase-4 reprocessing, let tp =
(0000110 · · · 0110) and ti = (0000110 · · · 1001) and as-
sume that ti satisfies Eq. (4). Then the next test error
pattern ti+1 = (0000110 · · · 1010) also satisfies Eq. (4),

since ∆(ti) ≤ ∆(ti+1). According to the generation
rule B, we find I = k − 3 from tp and ti and we con-
struct t̂ = (0000110 · · · 0000). Since wH(t̂) = 2 �= 0,
the rightmost subsequence (t̂4, t̂5) = (0, 1) in t̂ is re-
placed with (1, 0) and we obtain (ts,1, ts,2, · · · , ts,5) =
(00010). At the positions to the right of j = 5,
we set (ts,6, ts,7, · · · , ts,k) = (00 · · · 0111) such that
wH(ts) = 4. The next test error pattern to be gen-
erated is ts = (000100 · · · 00111). ✷

Example 2: In phase-4 reprocessing, let tp =
(0000110 · · · 1001) and ti = (0001000 · · · 0111) and as-
sume that ti satisfies Eq. (4). We find I = 4 from tp

and ti and we construct t̂ = (00000 · · · 0000). Since
wH(t̂) = 0, there remains no test error pattern ts ∈ T4
to be generated. Then we start phase-5 reprocessing
and generate t1 = (000 · · · 011111) ∈ T5. ✷

For a candidate codeword c̃i = c̃0⊕ w̃i, a function
Λ(·) with respect to c̃0 is defined as

Λ(w̃i) =
n∑

j=1

(−1)z̃j⊕c̃0,j w̃i,j |θ̃j |. (7)

Then, we can obtain L(c̃i) such that

L(c̃i) = L(c̃0) + Λ(w̃i), (8)

since

L(c̃i) =
n∑

j=1

(z̃j ⊕ c̃0,j ⊕ w̃i,j)|θ̃j |

=
n∑

j=1

(z̃j ⊕ c̃0,j)|θ̃j |+
n∑

j=1

(−1)z̃j⊕c̃0,j w̃i,j |θ̃j |.

(9)

At some decoding stage, we assume that w̃∗ mini-
mizes Eq. (7) in C̃l,s. Let Λ denote the minimum value,
i.e., Λ = Λ(w̃∗) ≤ 0. Thereafter, the decoder searches
a test error codeword w̃j ∈ C̃\C̃l,s such that Λ(w̃j) < Λ
and updates Λ as Λ := Λ(w̃j).

We now describe the GS decoding algorithm.

[The GS decoding algorithm]

1) Generate c̃0 := uG̃, and set L := L(c̃0), w̃∗ := 0,
Λ := 0 and l := 1.

2) a) Generate t1 ∈ Tl and calculate ∆(t1). If L <

∆(t1), then output c̃ML := c̃0⊕w̃∗ and stop. Oth-
erwise generate w̃1 := t1G̃.

†Though Gazelle et al. have presented less stringent suf-
ficient conditions than Eq. (4) in [4], we will not describe
them for simplicity. However, all sufficient conditions pre-
sented in [4] can be also applicable to the proposed decoding
algorithms in this paper.

††If wH(t̂) �= 0 and t̂ has no subsequence (0, 1), then
eliminate the rest of elements in Tl.
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b) Calculate Λ(w̃1). If Λ(w̃1) < Λ, then Λ :=
Λ(w̃1), L := L(c̃0) + Λ and w̃∗ := w̃1.

3) Set p := 1, i := 2.

a) Generate ti from tp by the generation rule A.
b) Calculate ∆(ti). If L < ∆(ti), then try to gen-
erate the next error pattern ts by the generation
rule B, otherwise go to 3-c). If there exists ts, then
set tp := ti, ti := ts and go to 3-b), otherwise go
to 4).

c) Set w̃i := tiG̃ and calculate Λ(w̃i). If Λ(w̃i) < Λ,
then Λ := Λ(w̃i), L := L(c̃0) + Λ and w̃∗ := w̃i.
Set tp := ti, i := i+ 1 and go to 3-a).

4) Set l := l + 1. If l ≤ κ, then go to 2), otherwise
output c̃ML := c̃0 ⊕ w̃∗ and stop. ✷

In the algorithm, for each l and i, the minimum
value of reliability loss Ll,i is obtained and we update
L such that L := Ll,i.

Note that the GS decoding algorithm is a struc-
tured MLD version of information set decoding [12].

We here discuss the complexity of the GS decoding
algorithm. The time complexity of permuting θ in the
nonincreasing order is O(n logn) and the construction
of G̃ requires O(n × κ2) [3]–[5]. These procedures are
carried out only once in a decoding procedure. Con-
trary to these procedures, encoding test error patterns
ti are carried out iteratively, where each encoding re-
quires binary operations of O(kn) with conventional en-
coding method [5], [8]. For each constructed test error
codeword, calculating Eq. (7) requires real operations
of O(n)†. Therefore, both encoding test error patterns
and the real operations dominate mainly the whole de-
coding complexity. As for space complexity, storing
G̃ requires O(kn). Therefore the space complexity is
much smaller than that of the other MLD algorithms.

4. Proposed Decoding Algorithm

In the GS decoding algorithm, the complexity of encod-
ing is the same as the conventional encoding method,
even if the test error patterns are generated according
to the generation rule of test error patterns. In this
section, we present an algorithm with low-complexity
to construct test error codewords by exploiting both
the ordering of test error patterns and the structural
property of G̃.

The key ideas of the proposed algorithm are 1)
a test error codeword w̃i(= tiG̃) is constructed by
adding one or two consecutive rows of G̃ to a test er-
ror codeword w̃q constructed previously and 2) test
error codewords constructed previously are stored in
memory in order that we can find w̃q = tqG̃ such
that dH(ti, tq) ≤ 2, where dH(·, ·) denotes the Ham-
ming distance. The first idea is similar to the “met-

ric computation using Gray code ordering” [1]. Gray
code ordering has the property in which there is only
one difference between the last and the next vector. In
the computation method of [1], for obtaining the next
metric, only the difference from the previous metric is
computed by using the property of Gray code ordering.
If the test error pattern is generated in the Gray-code
ordering, the next test error codeword is constructed by
adding one row of G̃ to the test error codeword lastly
constructed. However, we can easily expect that the
MRB-based MLD algorithm in which test error pat-
terns are generated in Gray code ordering needs to con-
struct more test error codewords than the GS decoding
algorithm. Therefore, we keep the generation rules of
test error patterns in the GS decoding algorithm for ef-
ficient MLD. In the GS decoding algorithm, the Ham-
ming distance between two test error patterns consec-
utively generated is more than two in general. Then,
based on the second idea mentioned above, we propose
the algorithm to construct the next test error codeword
effectively in the GS decoding algorithm.

Hereafter we will analyze the GS decoding algo-
rithm in detail. Then we will derive a proposed de-
coding algorithm which is more efficient than the GS
decoding algorithm.

In phase-l reprocessing, let ti be the current test
error pattern and tp be the last generated test error
pattern before generating ti. Let ts be the next gen-
erated test error pattern after generating ti. ti and ts

may be generated by either the generation rule A or B.

Definition 2: For tp, ti ∈ Tl, i > 2, we define Ii as
the bit position such that (tp,Ii

, tp,Ii+1) = (0, 1) and
(ti,Ii

, ti,Ii+1) = (1, 0). ✷

Example 3: Figure 1 shows how ti and Ii change in
phase-4 reprocessing. Note that t1 has no I1 from the
definition of Ii. ✷

i ti Ii

1 000 · · · 0001111 −
2 000 · · · 0010111 k − 4
3 000 · · · 0011011 k − 3
4 000 · · · 0011101 k − 2
5 000 · · · 0011110 k − 1
6 000 · · · 0100111 k − 5
7 000 · · · 0101011 k − 3
8 000 · · · 0101101 k − 2
9 000 · · · 0101110 k − 1
10 000 · · · 0110011 k − 4
...

...
...

13 000 · · · 1000111 k − 6
14 000 · · · 1001011 k − 3

Fig. 1 The illustration of the way ti and Ii change in phase-4
reprocessing.

†Real operation means real number addition and its
equivalent operations such as additions, subtractions and
comparisons.
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Lemma 2: For tp, ti ∈ Tl, assume that the next test
error pattern ts is generated. Then ts has the subse-
quence such that

(ts,Is
, ts,Is+1, · · · , ts,k) = (1, 0α+1, 1β), (10)

where α ≥ 0 and β ≥ 0. ✷

Lemma 3: If ti,i ≥ 2, is generated, the position Ii is
uniquely determined.

Proof: This is implicitly mentioned in p.245, three
lines above Eq. (18) of [4]. ✷

Lemma 4: Assume that tp is the last generated test
error pattern before generating ti, i ≥ 2. For ti,
(ti,Ii

, ti,Ii+1) is the rightmost subsequence (1, 0) in ti,
i.e.,

Ii = max{j | (ti,j , ti,j+1) = (1, 0)}, (11)

if and only if the position Ii satisfies (tp,Ii
, tp,Ii+1) =

(0, 1) and (ti,Ii
, ti,Ii+1) = (1, 0).

Proof: The if part can be straightforwardly proven
by Lemma 2, so we will prove the only if part.

Assuming that there exists a position I ′i =
max{j | (ti,j , ti,j+1) = (1, 0)} and (tp,I′

i
, tp,I′

i+1
) �=

(0, 1), we will prove by contradiction. Then there
must exist the unique position j′, j′ �= I ′i, which sat-
isfies (tp,j′ , tp,j′+1) = (0, 1) and (ti,j′ , ti,j′+1) = (1, 0).
By Lemma 2 and 3, we have (ti,j′ , ti,j′+1, · · · , ti,k) =
(1, 0α+1, 1β). This contradicts the assumption that
(ti,I′

i
, ti,I′

i+1
) is the rightmost subsequence (1, 0) in ti.

Therefore (tp,I′
i
, tp,I′

i+1
) = (0, 1) and the proof is com-

pleted. ✷

Let tp be the last generated test error pattern be-
fore generating ti, and we now consider encoding ti.

Lemma 5: Assume that (ti,Ii
, ti,Ii+1) is the right-

most subsequence (1, 0) in ti. If we need to encode ti in
the GS decoding algorithm, then there exists tq ∈ Tl,
q ≤ p < i, given by

tq,j =
{

ti,j ⊕ 1, if j ∈ {Ii, Ii + 1};
ti,j , otherwise, (12)

and such tq has been encoded so far in the GS decoding
algorithm, i.e.,

∆(ti) ≤ Ll,i =⇒ ∆(tq) ≤ Ll,q. (13)

Proof: Equation (12) implies (tq,Ii
, tq,Ii+1) = (0, 1).

Therefore,
k∑

j=1

ti,j2k−j −
k∑

j=1

tq,j2k−j

= ti,Ii
2k−Ii + ti,Ii+12

k−Ii−1

− tq,Ii
2k−Ii − tq,Ii+12

k−Ii−1

= 2k−Ii − 2k−Ii−1 > 0. (14)

Since test error patterns are generated in the increasing
order of standard binary representation, tq has been
already generated when ti is generated. i.e. q < i.

The relationship between ti and tq given by
Eq. (12) satisfies

∆(ti)−∆(tq) =
k∑

j=1

ti,j |θ̃j | −
k∑

j=1

tq,j |θ̃j |

≥ |θ̃Ii
| − |θ̃Ii+1| ≥ 0. (15)

For q < i, since Ll,q ≥ Ll,i, ti needs to be encoded. At
this time, Eq. (13) holds. Since tp is the last generated
test error pattern right before generating ti, q ≤ p < i
holds. ✷

Definition 3: Let G̃ be denoted by G̃ = [Ik|P̃ ] where
Ik is the k × k identity matrix and P̃ is k × (n − k)
matrix. Denote each row of G̃ and P̃ by g̃j and p̃j ,
j = 1, 2, · · · , k, respectively. i.e.,

G̃ =




g̃1
g̃2
...
g̃k


 , P̃ =




p̃1
p̃2
...
p̃k


 .

Furthermore, define f j = g̃j ⊕ g̃j+1 and qj = p̃j ⊕ p̃j+1

for j = 1, 2, · · · , k − 1. ✷

Assume that we have already obtained w̃q = tqG̃
by encoding tq where tq is given by Eq. (12), then we
can obtain a test error codeword w̃i by

w̃i = tiG̃ = tqG̃⊕ (ti ⊕ tq)G̃ = w̃q ⊕ f Ii
. (16)

Therefore, by Eq. (16), we can construct test error code-
words with lower complexity by storing such w̃q in
memory. The following lemmas help us to find w̃q

which satisfies Eq. (16) with respect to ti.

Lemma 6: Assume that tp is the last generated test
error pattern right before generating ti. Then equations

ti,j =
{

tp,j ⊕ 1, if j ∈ {Ii, Ii + 1};
tp,j , otherwise, (17)

and

tp,j = ti,j = 1, for j > Ii + 1, (18)

hold for tp and ti, i > 2, if and only if Ip < Ii is
satisfied.

Proof: When Ip < Ii, we will prove Eqs. (17) and
(18). According to the generation rule A or B, ti,j =
tp,j holds for j < Ii. Therefore, when Ii = k − 1,
Eq. (17) holds. When Ii �= k−1, the proof of Eq. (18) is
sufficient. Furthermore by Lemma 4, (tp,Ip

, tp,Ip+1) =
(1, 0) is the rightmost subsequence (1, 0) in tp.

We here assume that there exists a position j′ >
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Ii + 1 satisfying tp,j′ = 0. Then there exists a position
J ′ > Ii such that (tp,J′ , tp,J′+1) is the rightmost sub-
sequence (1, 0) in tp since tp,Ii+1 = 1 by the definition
of Ii. This contradicts Ip < Ii. Therefore, tp,j = 1 for
j > Ii + 1. According to the generation rule A or B,
since wH(ti) = wH(tp) = l and ti,j = tp,j , ∀j < Ii,

#{j′| ti,j′ = 1, j′ > Ii + 1}
= #{j′| tp,j′ = 1, j′ > Ii + 1}, (19)

must hold for ti, tp ∈ Tl where #{·} represents the
cardinality of a set {·}. Equation (19) implies ti,j′ =
tp,j′ = 1, ∀j′ > Ii + 1. Hence Eqs. (17) and (18) hold
and this completes the proof of the if part.

Conversely, we assuming Ii = k − 1 and Eq. (17)
holds, we will prove Ip < Ii. By Lemma 4, (ti,Ii

, ti,Ii+1)
is the rightmost subsequence (1, 0) in ti. Furthermore,
Eq. (17) implies (tp,Ii

, tp,Ii+1) = (tp,k−1, tp,k) = (0, 1).
Then Ip is at most Ii − 1 and this indicates Ip < Ii.

Next, assume Ii �= k − 1 and Eqs. (17) and (18)
hold. Then we will prove Ip < Ii. By Lemma 4,
(ti,Ii

, ti,Ii+1) is the rightmost subsequence (1, 0) in ti.
Furthermore, Eq. (17) implies that the position Ii sat-
isfies (tp,Ii

, tp,Ii+1) = (0, 1). Therefore by Eq. (18), the
rightmost subsequence (tp,Ip

, tp,Ip+1) = (1, 0) must sat-
isfy Ip < Ii. Hence the proof is completed. ✷

Lemma 7: Assume that tp is the last generated test
error pattern right before generating ti. If Ii < Ip, then
ti, i > 2, satisfies ti,Ii+2 = 0.

Proof: By the definition of Ii, (tp,Ii
, tp,Ii+1) =

(0, 1). By Lemma 4, (tp,Ip
, tp,Ip+1) = (1, 0) is the right-

most subsequence (1, 0) in tp. Therefore, tp has at least
one position satisfying tp,j = 0, ∃j > Ii + 1, in the
case Ii < Ip. According to the generation rule A or
B, since ti,j = tp,j , ∀j < Ii, Eq. (19) must hold for
ti, tp ∈ Tl. Since (ti,Ii+2, ti,Ii+3, · · · , ti,k) = (0α, 1β) by
Lemma 2, α ≥ 1 holds by the fact that there is at least
one position such that tp,j = 0, ∃j > Ii + 1. Therefore
ti,Ii+2 = 0 holds for ti. ✷

Lemma 8: If Ii < Ip, i > 2, then Iq = Ii + 1 for tq

given by Eq. (12).

Proof: Since (ti,Ii+2, ti,Ii+3, · · · , ti,k) = (0α, 1β),
α ≥ 1, by Lemma 2 and 7, tq has the subsequence
(tq,Ii+1, tq,Ii+2, · · · , tq,k) = (1, 0α, 1β), α ≥ 1. There-
fore (tq,Ii+1, tq,Ii+2) = (1, 0) is the rightmost subse-
quence (1,0) in tq. This indicates Iq = Ii+1 by Lemma
4 and the proof is completed. ✷

Remark 1: In phase-l reprocessing, if p = 1 and i =
2, then Ip = I1 does not exist. However, in this case,
Eq. (17) holds. This fact must be reminded to derive
the low-complexity method for constructing test error
codeword in the sequel. ✷

Theorem 1: Assume that tp is the last generated test
error pattern before generating ti. If Ip < Ii, i > 2,
then

w̃i = tiG̃ = w̃p ⊕ f Ii
, (20)

where f Ii
= g̃Ii

⊕ g̃Ii+1.
If i = 2 or Ii < Ip, i > 2, then

w̃i = tiG̃ = w̃q ⊕ f Ii
, (21)

where w̃q = tqG̃ and tq is given by Eq. (12).

Proof: (case Ip < Ii) Let b = (b1, b2, · · · , bk) ∈
{0, 1}k be

bj =
{
1, if j ∈ {Ii, Ii + 1};
0, otherwise. (22)

By Eq. (17) of Lemma 6,

w̃i = tiG̃ = (tp ⊕ b)G̃

= tpG̃⊕ bG̃ = w̃p ⊕ f Ii
. (23)

(case Ii < Ip) For ti, i > 2, there exists tq satisfying
Eq. (12). By Eq. (12), we have

w̃i = tiG̃ = (tq ⊕ b)G̃

= tqG̃⊕ bG̃ = w̃q ⊕ f Ii
, (24)

where b is given by Eq. (22).
For i = 2, tp = t1 and ti = t2 have the relationship

given by Eq. (17), (see remark 1). Therefore, we have
tp = tq and Eq. (21) holds.

The proof is completed. ✷

By the following lemma, we can effectively calcu-
late ∆(ti). We define δj = |θ̃j |−|θ̃j+1|, j = 1, 2, · · · , k−
1.

Lemma 9: If Ip < Ii, i > 2, then we have

∆(ti) = ∆(tp) + δIi
. (25)

If i = 2 or Ii < Ip, i > 2, then we have

∆(ti) = ∆(tq) + δIi
. (26)

✷

By using ∆(ti), we have the following lemma.

Lemma 10: The function Λ(w̃i) can be rewritten as

Λ(w̃i) = ∆(ti) +
n∑

j=k+1

(−1)z̃j⊕c̃0,j w̃i,j |θ̃j |, (27)

where w̃i = tiG̃.

Proof: In the right hand side of Eq. (7), z̃j⊕c̃0,j = 0
holds for 1 ≤ j ≤ k since c̃0 = uG̃ = (z̃1, z̃2, · · · , z̃k)G̃.
Furthermore, w̃i,j = ti,j for 1 ≤ j ≤ k since G̃ =
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[Ik|P̃ ] is the systematic generator matrix. Then Eq. (7)
expands as

Λ(w̃i) =
n∑

j=1

(−1)z̃j⊕c̃0,j w̃i,j |θ̃j |

=
k∑

j=1

w̃i,j |θ̃j |+
n∑

j=k+1

(−1)z̃j⊕c̃0,j w̃i,j |θ̃j |

= ∆(ti) +
n∑

j=k+1

(−1)z̃j⊕c̃0,j w̃i,j |θ̃j |. (28)

Hence we have Eq. (27) and the proof is completed. ✷

When we calculate Λ(·) by Eq. (27), the number of
real operations is no more than that by calculation of
Eq. (7).

Definition 4: Define T (j)l as the set of test error pat-
terns tτ ∈ Tl which satisfies Iτ = j, i.e., T (j)l = {tτ ∈
Tl | Iτ = j}. ✷

Lemma 11: Assume that Ii < Ip and tq is given by
Eq. (12). Then tq is the most recently generated ele-
ment in T (Ii+1)

l before generating ti. i.e.,

q = max{τ | tτ ∈ T (Ii+1)
l , τ < i}. (29)

Proof: Assume that there exists tq′ ∈ T (Ii+1)
l ,

q < q′ < i. If there exists a position j < Ii such
that tq′,j �= tq,j , then either q′ < q or i < q′ holds.
Therefore tq′,j = tq,j = ti,j for all j < Ii. By
Lemma 2, (tq,Ii+1, tq,Ii+2, · · · , tq,k) = (1, 0α+1, 1β) and
(tq′,Ii+1, tq′,Ii+2, · · · , tq′,k) = (1, 0α′+1, 1β′

). If tq′,Ii
=

1, then q′ > i hence tq′,Ii
= tq,Ii

= 0. Since wH(tq) =
wH(tq′), we have #{j | tq,j = 1, j > Ii} = #{j | tq′,j =
1, j > Ii}. Therefore β = β′ and this indicates q′ = q.
This is contradiction and Eq. (29) holds. ✷

We now describe the method for finding w̃p = tpG̃

in Eq. (20) or w̃q = tqG̃ in Eq. (21) fast. First, k ar-
rays w̃(j) of length n, 1 ≤ j ≤ k, are prepared. In
phase-l reprocessing of the GS decoding algorithm, we
store test error codeword w̃τ = tτ G̃, which has been
already constructed before constructing w̃i, into the ar-
ray w̃(Iτ ), i.e., w̃(Iτ ) := w̃τ . Similarly, ∆(j), 1 ≤ j ≤ k,
are prepared. In phase-l reprocessing, we store ∆(tτ )
into the array ∆(Iτ ), i.e., ∆(Iτ ) := ∆(tτ ). Note that
a superscript of arrays w̃(Iτ ) and ∆(Iτ ) which means
the address of memory is uniquely determined by tτ

(or equivalently by wτ ). w̃(j) plays a role as w̃p of
Eq. (20) or w̃q of Eq. (21) in the proposed decoding al-
gorithm presented below. In the same way, ∆(j) plays
a role as ∆(tp) or ∆(tq). Furthermore, we now rewrite
t1 ∈ Tl−1 as t

(l−1)
1 and rewrite t1 ∈ Tl as t

(l)
1 . Let w̃′ be

the stored test error codeword such that w̃′ = t
(l−1)
1 G̃.

Let ∆′ = ∆(t(l−1)1 ) be also stored. Remark that t
(l−1)
1

and t
(l)
1 have only one different symbol in the posi-

tion j = k − l + 1. When phase-(l − 1) reprocess-
ing is terminated and phase-l reprocessing is started,
test error codeword w̃1 = t

(l)
1 G̃ can be obtained by

w̃1 = w̃′ ⊕ gk−l+1. Similarly, we can calculate ∆(t
(l)
1 )

in the way ∆(t(l)1 ) = ∆
′ + |θ̃k−l+1|.

We here propose an improved version of the GS de-
coding algorithm below, using low-complexity encoding
method, where we define I1 = k − l − 1.

[Proposed decoding algorithm]

1) Generate c̃0 := uG̃, and set L := L(c̃0), w̃′ := 0,
w̃∗ := 0, ∆′ := 0, Λ := 0 and l := 1.

2) a) Generate t1 ∈ Tl, and set I1 := k − l + 1, ∆′ :=
∆′+ |θ̃I1 | and ∆(I1) := ∆′. If L ≤ ∆′, then output
c̃ML := c̃0⊕w̃∗ and stop, otherwise w̃′ := w̃′⊕g̃I1

,
and set w̃(I1) := w̃′.

b) Calculate Λ(w̃(I1)). If Λ(w̃(I1)) ≤ Λ, then Λ :=
Λ(w̃(I1)), L := L(c̃0) + Λ and w̃∗ := w̃(I1).

3) Set p := 1, i := 2, and generate ti.

a) Find the position Ii from ti. If Ip < Ii, then

∆(Ii) := ∆(Ip) + δIi
, (30)

otherwise

∆(Ii) := ∆(Ii+1) + δIi
. (31)

b) If L ≤ ∆(Ii), then set Ip := Ii and try to generate
ts by the generation rule B, otherwise go to 3-c).
If there exists ts, then set tp := ti, ti := ts and go
to 3-a), otherwise go to 4).

c) If Ip < Ii, then

w̃(Ii) := w̃(Ip) ⊕ f Ii
, (32)

otherwise

w̃(Ii) := w̃(Ii+1) ⊕ f Ii
. (33)

d) Set Ip := Ii and calculate Λ(w̃(Ii)). If Λ(w̃(Ii)) ≤
Λ, then set Λ := Λ(w̃(Ii)), L := L(c̃0) + Λ and
w̃∗ := w̃(Ii). Set tp := ti, i := i+1, generate ti by
the generation rule A and go to 3-a).

4) Set l := l + 1. If l ≤ κ, then go to 2), otherwise
output c̃ML := c̃0 ⊕ w̃∗ and stop. ✷

In order to show the validity of the proposed de-
coding algorithm, we derive the following theorem.

Theorem 2: Let

J =
{

Ip, if Ip < Ii;
Ii + 1, otherwise. (34)
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Then in step 3-c) of the proposed decoding algorithm,

w̃(Ii) = w̃i = tiG̃ = w̃(J) ⊕ f Ii
, (35)

where f Ii
= g̃Ii

⊕ g̃Ii+1. Furthermore, in step 3-a) of
the proposed decoding algorithm,

∆(Ii) = ∆(ti) = ∆(J) + δIi
, (36)

where δIi
= |θ̃Ii

| − |θ̃Ii+1|.
Proof: We will prove Eq. (35) and Eq. (36) by math-

ematical induction.
For i = 2, tp = t1 and ti = t2 have the relationship

given by Eq. (17), (see remark 1). Furthermore, since I1
is defined as I1 = k−l+1, I1 = I2+1 holds. Therefore,
Eq. (35) and Eq. (36) hold.

We here assume w̃(Ip) = w̃p = tpG̃ and ∆(Ip) =
∆(tp). Consider that ti satisfying Ip < Ii is the next
generated test error pattern after tp. By Lemma 6, tp

and ti has the relationship given by Eq. (17). Then by
Eq. (20) of Theorem 1,

w̃(Ii) = tiG̃ = tpG̃⊕ f Ii
= w̃(Ip) ⊕ f Ii

. (37)

Furthermore, by Lemma 9, we have

∆(Ii) = ∆(ti) = ∆(tp) + δIi
= ∆(Ip) + δIi

. (38)

Next, we consider the case that Ii < Ip. For ti, i >
2, there exists tq satisfying Eq. (12). Assume w̃(Iq) =
w̃q = tqG̃ and ∆(Iq) = ∆(tq). By Lemma 8, we have
Iq = Ii + 1. Therefore, by Eq. (21) of Theorem 1,

w̃(Ii) = tiG̃ = tqG̃⊕ f Ii
= w̃(Ii+1) ⊕ f Ii

. (39)

Furthermore, tq given by Eq. (12) is the most recently
generated element in T (Ii+1)

l by Lemma 11, then no
other w̃q′ = tq′G̃ such that tq′ ∈ T (Ii+1)

l , q′ �= q, have
been stored in w̃(Iq) when ti is generated. Similarly,
∆(tq) has been stored into ∆(Iq) when ti is generated.
Consequently, the validity of Eq. (35) and Eq. (36) are
guaranteed. The proof is completed. ✷

Theorem 3: The time complexity of constructing a
test error codeword in the proposed decoding algorithm
is O(n).

Proof: Equations (32) and (33) indicate the time
complexity to construct a test error codeword requires
n binary exclusive OR operations. Therefore the time
complexity of constructing a test error codeword is
O(n). ✷

Note that the time complexity of constructing a
test error codeword in the GS decoding algorithm is
O(kn).

The main purpose of the proposed decoding algo-
rithm is to reduce the time complexity of constructing

test error codewords in the GS decoding algorithm. In
addition to the above improvement of Theorem 3, we
can reduce the number of real operations in the GS
decoding algorithm.

Theorem 4: In the proposed decoding algorithm, the
number of real operations is no more than that in the
GS decoding algorithm. In phase-l reprocessing for
l ≥ 2, the proposed decoding algorithm always reduces
the number of real operations of the GS decoding algo-
rithm.

Proof: In phase-l reprocessing, the calculation of
the equation ∆(ti) =

∑k
j=1 ti,j |θ̃j |, which is employed

in the GS decoding algorithm, requires l− 1 real oper-
ations. On the other hand, the calculation of Eq. (25)
or (26), which is employed in the proposed decoding
algorithm, requires only 1 real operation.

Furthermore, the calculation of Eq. (7) with re-
spect to w̃i, which is employed in the GS decoding
algorithm, requires wH(w̃i)−1 real operations. On the
other hand, the calculation of Eq. (27) with respect to
w̃i, which is employed in the proposed decoding algo-
rithm, requires wH(w̃i)− l real operations.

Therefore the number of the real operations in the
proposed decoding algorithm is at most the same as
that in the GS decoding algorithm. In phase-l repro-
cessing for l ≥ 2, the use of Lemma 9 and Eq. (27)
guarantees the reduction of the number of the real op-
erations in the proposed decoding algorithm. ✷

Theorem 5: The additional space complexity to the
GS decoding algorithm is O(kn). ✷

Proof: The proposed decoding algorithm requires
the space complexity for k w̃(Ii)s and w̃′. Then we
store at most k + 1 test error codewords in memory.
This space complexity is O(kn). In order to construct
test error codeword fast, the proposed decoding algo-
rithm utilizes f j = gj ⊕ gj+1, j = 1, 2, · · · , k − 1. The
space complexity to store f j , j = 1, 2, · · · , k − 1, is
O(kn). In addition to the above space complexity, the
rest of space complexity increased by the proposed de-
coding algorithm is for k ∆(Ii)s and ∆′. Therefore, the
proposed decoding algorithm needs space complexity of
O(kn) besides the space complexity which the GS de-
coding algorithm needs. ✷

Remark 2: The space complexity for storing the gen-
erator matrix is O(k(n − k)), which is the space com-
plexity of the GS decoding algorithm. Therefore, Theo-
rem 5 implies that the space complexity of the proposed
decoding is the same order as that of the GS decoding
algorithm. ✷

We now consider further reduction in the time
and space complexity to construct w̃i by Eq. (20) or
Eq. (21) of Theorem 1, by the structural property
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of G̃. In phase-l reprocessing, for i = 1, · · · ,
(
k
l

)
,

we define (n − k)-tuple ṽi such that ṽi = tiP̃ =
(w̃i,k+1, w̃i,k+2, · · · , w̃i,n) where P̃ is defined by defi-
nition 3. Then w̃i is expressed by w̃i = ti ◦ ṽi, where
t◦ ṽ denotes the concatenation of t and ṽ. By Theorem
1, we derive the following theorem without proof.

Theorem 6: If Ip < Ii, i > 2, then

w̃i = ti ◦ (ṽp ⊕ qIi
), (40)

where qIi
= p̃Ii

⊕ p̃Ii+1.
If Ii < Ip, i ≥ 2, then

w̃i = ti ◦ (ṽq ⊕ qIi
), (41)

where ṽq = tqP̃ and tq is given by Eq. (12). ✷

Theorem 6 implies that at most (n−k) binary oper-
ations is required to construct a test error codeword by
storing (n−k)-tuples ṽq in memory. This complexity is
smaller than that of Eq. (20) or Eq. (21) of Theorem 1,
which requires at most n binary operations, and much
smaller than that of the conventional encoding method.

Remark 3: Remark that it is sufficient to store (n−
k)-tuples ṽq instead of storing n-tuples w̃q. This space
complexity for storing ṽq is only O(k(n − k)). Fur-
thermore, the space complexity for storing qj , j =
1, 2, · · · , k−1, is also O(k(n−k)). Therefore, the addi-
tional space complexity to the GS decoding algorithm
is O(k(n− k)). ✷

Remark 4: In phase-l reprocessing of the GS decod-
ing algorithm, the number of binary operations required
for constructing a test error codeword is ln when l rows
of G̃ are simply added. However, since G̃ is systematic,
the number of binary operations for a test error code-
word is only l(n − k), if we consider that l rows of Q
are added. In this case, the number of binary opera-
tions for a test error codeword also depends on l. On
the contrary, in the proposed decoding algorithm, the
number of binary operations required for constructing
a test error codeword is n− k, which is independent of
l.

In the GS decoding algorithm, the number of
real operations for calculating Λ(w̃i) is wH(w̃i) − 1.
On the contrary, in the proposed decoding algorithm,
the number of real operations for calculating Λ(w̃i) is
wH(w̃i)− l.

Therefore, the time complexity in the proposed de-
coding algorithm is equal to or smaller than that of
the GS decoding algorithm for one test error codeword.
Furthermore, in phase-l reprocessing for l ≥ 2, the time
complexity in the proposed decoding algorithm is al-
ways smaller than that of the GS decoding algorithm.

✷

Theorem 7: The proposed decoding algorithm per-
forms MLD.

Proof: Theorem 2 guarantees that test error code-
words constructed in the proposed decoding algorithm
are the same as that in the GS decoding algorithm.
Since the GS decoding algorithm performs MLD, the
proposed decoding algorithm always finds the ML code-
word. ✷

5. Simulation Results

In this section, we present simulation results for the bi-
nary (63,30,13) BCH code and the binary (127,64,21)
BCH code. We compare the proposed decoding algo-
rithm with the GS decoding algorithm. The results are
obtained by simulating 10000 codewords for each sig-
nal to noise ratio (Eb/N0 [dB]) and the average values
are shown in tables. In the tables, we use the following
notation.

BGS : the number of binary operations of constructing
test error codewords in the GS decoding algorithm

Bpro: the number of binary operations of constructing
test error codewords in the proposed decoding algo-
rithm

RB : the ratio of binary operations in the proposed de-
coding algorithm to the GS decoding algorithm, i.e.,
RB = Bpro/BGS

ROGS : the number of real operations in the GS decod-
ing algorithm

ROpro: the number of real operations in the proposed
decoding algorithm

RRO: the ratio of real operations in the proposed de-
coding algorithm to the GS decoding algorithm, i.e.,
RRO = ROpro/ROGS

In Tables 1 and 2, the numbers of binary operations of
constructing test error codewords for each decoding al-
gorithm are shown. In phase-l reprocessing, the number
of binary operations for constructing a test error code-

Table 1 The number of binary operations to construct test
error codewords for the (63, 30, 13) BCH code.

Eb/N0 BGS Bpro RB

1.50 1.76 · 108 5.11 · 108 0.2896

2.00 8.76 · 108 2.67 · 108 0.3044

2.50 3.80 · 108 1.24 · 108 0.3273

3.00 1.45 · 108 5.28 · 107 0.3647

3.50 4.69 · 107 2.01 · 107 0.4293

4.00 1.57 · 107 7.90 · 106 0.5024

4.50 5.85 · 106 3.27 · 106 0.5594

5.00 1.73 · 106 1.23 · 106 0.7065

5.50 5.62 · 105 4.68 · 105 0.8329
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Table 2 The number of binary operations to construct test
error codewords for the (127, 64, 21) BCH code.

Eb/N0 BGS Bpro RB

2.50 4.50 · 1012 7.05 · 1011 0.1566

3.00 6.40 · 1011 1.12 · 1011 0.1757

3.50 5.95 · 1010 1.29 · 1010 0.2176

4.00 6.11 · 109 1.69 · 109 0.2773

4.50 7.18 · 108 2.61 · 108 0.3644

5.00 1.03 · 108 4.99 · 107 0.4845

5.50 1.82 · 107 1.17 · 107 0.6445

6.00 3.86 · 106 3.12 · 106 0.8077

6.50 8.39 · 105 8.21 · 105 0.9789

Table 3 The number of real operations for the (63, 30, 13)
BCH code.

Eb/N0 ROGS ROpro RRO

1.50 4.35 · 104 3.41 · 104 0.7843

2.00 2.26 · 104 1.80 · 104 0.7965

2.50 1.07 · 104 8.68 · 103 0.8113

3.00 4.72 · 103 3.98 · 103 0.8433

3.50 2.06 · 103 1.83 · 103 0.8884

4.00 1.10 · 103 1.02 · 103 0.9334

4.50 7.32 · 102 7.06 · 102 0.9645

5.00 5.61 · 102 5.54 · 102 0.9877

5.50 4.78 · 102 4.76 · 102 0.9958

Table 4 The number of real operations for the (127, 64, 21)
BCH code.

Eb/N0 ROGS ROpro RRO

2.50 5.43 · 107 4.09 · 107 0.7542

3.00 8.41 · 106 6.53 · 106 0.7765

3.50 9.24 · 105 7.53 · 105 0.8150

4.00 1.16 · 105 9.96 · 104 0.8571

4.50 1.83 · 104 1.64 · 104 0.8960

5.00 4.32 · 103 4.07 · 103 0.9421

5.50 1.87 · 103 1.83 · 103 0.9791

6.00 1.29 · 103 1.29 · 103 0.9946

6.50 1.09 · 103 1.08 · 103 0.9987

word is calculated as l(n − k) and (n − k) in the GS
decoding and the proposed decoding algorithm, respec-
tively. In Tables 3 and 4, the number of real operations
for each decoding algorithm are shown. For sorting the
columns of generator matrix, the quick sort technique,
whose time complexity is O(n logn), is used. In this pa-
per, the number of real operations for calculating L(c̃0)
is counted as dH(z̃, c̃0)− 1 instead of n− 1.

By Table 1 for the (63, 30, 13) BCH code, the
number of binary operations in the proposed decoding
algorithm is 4/5 ones in the GS decoding algorithm at
5.5 [dB] where RB is maximum. From 3.0 to 1.5 [dB],
the proposed decoding algorithm reduces them up to
1/3. By Table 2 for the (127, 64, 21) BCH code, the
number of binary operations in the proposed decoding
algorithm is almost the same as that in the GS decoding
algorithm at high SNR. At 6.5 [dB], about 98% of test
error patterns encoded in total are in phase-1 reprocess-
ing and the rest 2% of them are in phase-2 reprocessing.
However, as SNR becomes lower, RB decreases and the
proposed decoding algorithm reduces the number of bi-
nary operations up to 1/5 at 2.5 [dB]. Tables 1 and 2
show that RB monotonically decreases as SNR becomes
smaller. The reason is that the weight of test error pat-
terns, l, generated in the algorithm tends to be larger
at the low SNR. In this case, since the number of bi-
nary operations for a test error codeword depends on l
in the GS decoding algorithm and is independent of l
in the proposed decoding algorithm, difference between
BGS and Bpro becomes larger. Note also that the value
RB for the (127, 64, 21) code is smaller than that for
the (63, 30, 13) code at each SNR.

Although details are omitted here, for other codes
with length n = 63, the simulation results of RB for the
(63, 24, 15) BCH and the (63, 36, 11) BCH codes at
1.5 [dB] are 0.2532 and 0.3426, respectively. For other
codes with length n = 127, the simulation results of RB

for the (127, 50, 27) BCH and the (127, 78, 15) BCH
codes at 3.0 [dB] are 0.1369 and 0.1791, respectively.

By Tables 3 and 4, the value RRO for the (127,
64, 21) code is always smaller than that for the (63,
30, 13) code at each SNR. However, the number of real
operations for sorting columns of generator matrix is
about 490 for the (63, 30, 13) code and about 1140 for
the (127, 64, 21) code on average although these num-
bers slightly change as SNR changes. Note that the
number of real operations for sorting costs the same
for both the GS and the proposed decoding algorithm.
Then at 5.5–4.5 [dB], the number of real operations for
sorting columns of generator matrix is dominant in the
total number of real operations for the (63, 30, 13) code.
Similarly, at 6.5–5.0 [dB], the real operations for sorting
columns of generator matrix are dominant for the (127,
64, 21) code. The values RRO for both the (63, 30, 13)
and the (127, 64, 21) code decrease as SNR becomes
lower. This fact indicates that the proposed decoding
algorithm becomes more efficient as the channel char-
acteristics become worse. Furthermore, the value RRO

for the (127, 64, 21) code decreases faster than that for
the (63, 30, 13) as SNR decreases.

For reference, we discuss the performance of trellis-
based MLD algorithms [1], [2]. In Table II-8 of [1], for
the (64, 30, 14) extended BCH code, Lafourcade and
Vardy MLD algorithm [1] requires about 1.6 · 107 real
operations. In Table II of [2], for the (64, 30, 14) ex-
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tended BCH code, the upper bound of the real opera-
tions which RMLD-(G, U) algorithm requires is about
9.0 · 106. On the other hand, the proposed decoding al-
gorithm requires 3.4 · 104 real operations on average at
1.5 [dB]. This implies the efficiency of the proposed de-
coding algorithm in some sense. In trellis-based MLD
algorithms, however, the maximum number of real op-
erations is bounded.

6. Concluding Remarks

In this paper, we have proposed a MRB based decod-
ing algorithm for MLD. This algorithm is an improved
version of the GS decoding algorithm, which reduces
the time complexity for both constructing test error
codewords and the number of real operations simulta-
neously. The theoretical analysis shows in total the ef-
ficiency of the proposed decoding algorithm, compared
with the GS decoding algorithm. The results of com-
puter simulation show the efficiency of the proposed
decoding algorithm for the (63,30,13) BCH code and
the (127,64,21) BCH code. Evidently, we can perform
sub-optimal decoding by limiting the number of test
error patterns. In that case, we can expect the same
effect presented in this paper.

As future improvements, the extension to nonbi-
nary cases is to be devised. Less stringent sufficient
condition that eliminates unnecessary test error pat-
terns is also to be derived.
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