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Abstract Several reliability based maximum likelihood decoding (MLD) algorithms of linear block codes have
been widely studied. These algorithms efficiently search the most likely codeword, using the most reliable basis
of generator matrix whose leftmost & (the dimension of code) columns are the most reliable and linearly indepen-
dent. In this paper, several sufficient conditions for eliminating unnecessary candidate codewords or their metrics
computations are derived for MLD algorithms using the most reliable basis by utilizing a order relation among
binary vectors. Under the certain assumption of generation order of candidate codewords, we devise an adaptive
implementation of the derived conditions. Consequently, the MLD algorithm employing the derived conditions
reduces the number of generated candidate codeword and of real number operations, compared to a conventional
MLD using the MRB without the degradation in error performance.
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cient condition for optimality is applied to generated can-
didate codeword. A sufficient condition for eliminating un-
necessary test error patterns is also applied before they are

1. Introduction

Soft decision decoding for linear block codes reduces the
block error probability by taking advantage of channel mea-
surement information, compared with conventional hard de-
cision decoding. Particularly, maximum likelihood decod-
ing (MLD) achieves the best error performance when each
codeword are transmitted with equal probability. Since the
complexity of MLD becomes too complex to implement as
the code length becomes larger, many researchers have been
devoted to develop efficient MLD algorithms. Among such
decoding algorithms, the most reliable basis (MRB) based
MLD algorithms which iteratively generate candidate code-
words by using the generator matrix of the code[1] ~ [4]
(Sub-optimum versions of the MRB based soft decision de-
coding algorithms are found in[5] ~ [7]). The MRB based
MLD algorithms averagely reduce the time complexity as
well as the space one. Furthermore, these algorithms are
applicable for any linear block codes [7].

In the MRB based decoding algorithms, test error pat-
terns are iteratively generated to construct candidate code-
words. In these algorithms, implicitly or explicitly. a suffi-

encoded with the MRB (of generator matrix). As a result,
the MRB based MLD algorithms require relatively small
number of candidate codewords and their metrics compu-
tations. At low to moderate SNR and for moderate code
rates and large code lengths, however, the time complexity
of them for performing MLD is still very large.

In this paper, first, we define an order relation among bi-
nary vectors. Then we derive a sufficient condition for elim-
inating unnecessary test error patterns which cannot give
the ML codeword by using the order relation. Although
the basic concept of this approach has been presented in [8],
we show that the derived condition is generalized and more
stringent. With the similar principle, a sufficient condition
for omitting unnecessary metrics computations of candidate
codewords is derived. In accordance with the candidate
codewords updated, an adaptive implementation of the al-
gorithm, where the codeword referenced by the derived con-
dition is adaptively altered, is considered to make the de-
rived conditions more effective. Since the implementation of
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the derived sufficient conditions require no real values, the
number of real number addition-equivalent operations (we
will call real number addition-equivalent operations real op-
erations) is reduced in the MLD algorithm employing the
proposed conditions. Finally, we show the effectiveness of
the proposed methods without the degradation of the error
performance.

This paper is organized as follows. In Sect. 2., the general
principle of the MRB based MLD algorithm is reviewed as a
preliminary. In Sect. 3., a generation condition of test error
patterns in this paper is described. In Sect. 4., sufficient
conditions for eliminating the unnecessary test error pat-
terns or the unnecessary metrics computations are derived.
Finally, some simulation results are shown in Sect. 5. and
concluding remarks are stated in Sect. 6.

2. The MRB based MLD Algorithm

Let C be a binary linear (n,k,d) block code with length
n, dimension k¥ and minimum distance d. Let G be the
generator matrix of C. Assume that each codeword ¢ =
(e1,¢2,-..,¢n) € C has equal probability to be transmitted
through the Additive White Gaussian Noise (AWGN) chan-
nel with the signal to noise ratio (SNR) E;/No [dB]. The de-
tector projects the received sequence r = (ry,r2,...,rs) €
R™ into the reliability sequence 8 = (81,62,...,6x) such
that 8; = In ‘}:—E:J:::%:%, and inputs @ into the decoder. Let
V" denote a set of all binary n dimensional vectors. The de-
coder estimates a transmitted codeword from both 8 and the

hard decision received sequence z = (21, 22,...,2n) € V" of
@ such that
_Jo ifée =0
n= { 1, otherwise. 1)

An error probability of the symbol z;, P(z, ¥ cj|r;), is
smaller as the value |8;], j € [1,n] becomes larger where
[Ja, 78] denotes a set of integers from jo to jg. Therefore,
we call |6,| reliability measure.

For any ¢ = (z1,%2,...,Zn) € V", let L(x) be the func-
tion of the reliability loss with respect to a given (fixed) z
defined as

Lz) =Y _(z; ®2)I6;], (2)

i=1

where @ represents the exclusive OR operation. The func-
tion L(x) is also known as discrepancy(7], [9]. For a subset
X of V", let L[.Y] be defined as

LI¥) = min L(z). (3)

Then L(emy) = L[C] if and only if emr € C is the ML
codeword [4], [7], [9].

In the MRB based decoder, positions of 8 are reordered
in the nonincreasing order of reliability measure. We denote
the resultant sequence & = A(@) where X is the permutation
function from 8 to 8. i.e., |8;| 2 |8;41], 1 £ j < n. Let G be
the permuted generator matrix according to the reordering
of 8 and C be the code generated by G. Let V™ denote the
set such that V" = {z = A(=)| z € V", }.

Furthermore, columns of G are permuted such that the
most reliable and linearly independent (MRI). The MRI
columns are linearly independent k columns of generator
matrix whose reliabilities are the largest among any other
linearly independent k columns. For the resultant matrix,
the leftmost k x k matrix is rearranged to be the identity
matrix by the standard row operations. This identity ma-
trix forms MRB. The resultant generator matrix is denoted
by G. Let ¢ be this permutatlon function of columns from
G to G. Therefore, & = $(f). Note that |§;| = 16,411,
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1£5<k, and |§; |2|0]+,| k+1< 3" < n. Let C denote
the code generated by G, whlch is equivalent to C. Let V"
denote the set such that V = {2 =¢(Mz))| z € V"}.

Define that b = (by, b2, ..., bk) consists of K MRI symbols
of 2 =(z1,2,...,%n). ie., bj = %;, J €[1,k). bis regarded
as an information sequence and the decoder constructs the
initial codeword ég = bG. Remark that ¢y is the ML code-
word if ¢g = 2[4],[9]. If L(€s) > O, the decoder iteratively
constructs candidate codewords by G and searches the ML
codeword.

For a binary vector x, let wy(«x) denote the Hamming

weight of & and supp(x) = {j| ; = 1} be its support. For
a set X, let |[¥| be the cardinality of X.

[Definition 1] For a set of positive integers J =
{71,72,-.., i} such that || =land 1 £ 51 < 2 < ++- <
st £ k, a test error pattern ty = (tz,.t72,...,t7,%) €
{0,1}* is defined such that supp(ts) = J. A codeword
Wy = (W71, W72,-.. . WT,n) = t7G is called a test error
codeword which gives a candidate codeword ¢7 = ¢g B w 7.
A candidate codeword ¢z and a test error codeword g
are said to be better than & and @ 5/, respectively, if
L(ég) < L(&7+). For asubset C' of €, a candidate codeword
€7 and a test error codeword 1w 7 are said to be the best in
¢ if L(&7) = L[C"). D

By Def.1, ty is k dimensional all zero vector 0¥ which is
regarded as a test error pattern corresponding to the initial
codeword €g since ¢g = €g D tyG = ¢y $ 0™. It is obvious
that there is one to one correspondence between t7 and &7.
Therefore the search order of candidate codewords is deter-
mined by the generation order of test error patterns. For
simplicity of description, the location sets J; are indexed
with 7 in which we assume ¢ 7, is generated in the increasing
order of i such that 1 £ i < 25.

Let C7, be a set of codewords which includes all candi-
date codewords &7, = €¢ @ W 7, such that 0 £ 1 < s before
generating tz,, i.e.,

é;/, ={£‘a}U{&J‘ =CoPW 7, |'&7J| :t_y.»G-, 1£i< s} .(4)

For a test error pattern t 7, let A(ty) be defined as

k
Altz) =) 7,16, (5)

=1

which expresses the reliability loss with respect to b.
At a decoding stage of generating t 7, we need not to en-
code t7 if

LIC7] £ A(ts,), (6)

since a candidate codeword ¢z = & @ 'w;; such that
Wy = t7G always satisfies A(t7) £ L(€7). i.e., if eq.(6)
holds, t7 can never give the best candidate codeworgl

Let ép = (ép,1,€¢,2....,6¢n) = 2P &p. For ¢ € V", let
A(z) be defined as

> (1= 2,)i6,l- (7)
JEsupp(x)
Then, for ¢7 = ¢p @ w7, we can compute L(¢zy) such that
L(es) = L(ee) + A(w 7). (®)
since from 2@ ¢y = ép G W 7.

L(es) = Z(eo;@wj DN

J=1

= fo,lfil+ Y (1-280)b7,08,l.  (9)
=1 =1



For a subset .¥ of V" and &p, let A[¥] be defined as
A[X]= min _A(=). (10)
z@HTpEX

At a decoding stage of generating t7,, we only need to
search a test error codeword Wy, € C\Cz, such that
Al 7)) < AlCz,]. If there exists no test error pattern to
be generated, the decoder outputs &7, = &p @ 7, as the
estimated codeword. For t7, let f(t7) express any heuristic
function such that A(ty) £ f(ts) £ L(¢s). We describe
the general version of the MRB based MLD algorithm be-
low.

[The MRB based MLD Algorithm]

1) Generate é&p := bG, and set L := L{&p), Wpes := 0,
A:=0and 1:=1.

2) Generate t7; and calculate f(tz;). If L £ f(t7;), then
go to 4). :

3) Generate wy, := t7G and calculate A(wyz,). If
A(wz;) < A, then A := A(wz,), L := L(ép) + A and
Whest 1= 11’.7,‘ .

4) Set 7 := i + 1. If the certain terminating criterion holds
or i = 2%, then output éy1, 1= €g ® Wyes. and stop, oth-
erwise go to 2). m]

About a terminating criterion of the decoding algorithm in

step 4), several criteria have been proposed in (2], [4], [5], [8].
We here state the complexity of the MRB based decod-

ing algorithm. The time complexity of permuting 6 in the
nonincreasing order is O(nlogn) and the construction of
G requires O(n x k?) where x = min{k.n — k} [1]. 2], [5].
These procedures are carried out only once in a decoding
algorithm. Contrary to the above procedures, generating
t 7 and constructing i y = t7G are carried out iteratively,
where each encoding requires binary operations of O(kn)
with conventional encoding method [4],[5]. For each test
error codeword constructed, calculating eq.(7) requires real
operations of O(n). Therefore, both encoding test error pat-
terns and the real operations dominate mainly the whole
decoding complexity.

3. Generation of Test Error Patterns

In the MRB based decoding algorithm, the time com-
plexity for finding the ML codeword strongly depends on
the search order of candidate codewords. In this section, we
consider generation order of test error patterns.

[Definition 2] (The Order Relation for Sets) For two
distinct sets X = {j1.J2,-- -, jm}and X' = {31, 52, ... . Jo }
we write “X’ <5 X” if m' £ m and there exists a sub-
set {i1,%2,...,4m yCA such that i1 < i2 < --- < im and
i<, 1<h<m'. ]
[Definition 3] (The Order Relation for Binary Vec-
tors) For two distinct sets X = {ji1.j2,...,Jm} and X’ =
{51, 7%+ Jms}, let vx and v be binary vectors such
that supp(vx) = X and supp(vys) = X', respectively. We
write “vy <v vx” if and only if there is the order relation
X <s X. o

In this paper, we assume that test error patterns are gen-
erated in accordance with the following condition.

[Generation Condition] During the decoding procedure, if
ty, Jg[l. k], is generated, a test error pattern ¢ 5. such that

ts; <v tz has been already generated or eliminated from
consideration at a preceding stage. ]
This condition is similar to EG condition [9], in soft deci-
sion decoding algorithm using algebraic decoder.
For example, if test error patterns are generated in bi-
nary order, then the above condition is satisfied. The in-
creasing order of A(tz)[3],[7] or the increasing order of

Hamming weight wg(t7)[1],[5], [8] also satisfy Generation
Condition'”. On the other hand, in the A* decoding algo-
rithm [2), test error patterns are generated in the increasing
value of a heuristic function where this order does not satisfy
Generation Condition.

For the special case of Generation Condition, the generat-
ing order proposed by D. Gazelle and J. Snyders [1] is briefly
described. Hereafter, we call the MRB based decoding algo-
rithm employing the generation order in[1] the GS decoding
algorithm. k

Forl € [1,&],let T; = {t € {0,;1}*|wx () = I} be the set of
test error patterns. The GS decoder processes 7; in increas-
ing order of I. The processing of 7; is referred to as phase-l
reprocessing[5), [8]. In phase-l reprocessing, | € [1, ], a test
error pattern t7; is generated in binary order.

In phase-! reprocessing, a test error pattern tz,,,,1 2 1,
is generated from tg, in the following manner. Let J; =
{j1,32...-, 51} and Jis1 = {51, 2. - ... i }- The first element
tg, of Ti satisfies jn = k—l+h, 1 £ A <1 For1 <i < (}),
we find the position Ix = max{h| j» —1 ¢ J: and j» € Ji}.
The next test error pattern t7,,, is obtained such that

Ik,
Jh=1% Jn—1,
k—1+h,
Hereafter we call this method, which generates 4, from &;,
the GS generation rule A.

If a test error pattern ty, satisfies eq.(6), then t7 such
that J; <s J is also satisfy eq.(6) [7] and such t7 need not
to be encoded. Then the next test error pattern t7, € T;
such that t5, £v tz,.t < s, is generated in the following
manner. Let J; = {jlaj%-"vjl} and J. = {j;’j;v"-wjl’}'
First, we find the position such that /s = max{h| j» €
Ji and jr +1 ¢ Ji}. If In =1, then the rest of elements in
71 are eliminated from consideration and we enter the phase-
(1 + 1) reprocessing. Otherwise, for the temporary set Jimp
such that Jimp = {J1,%2,-..,Jra—1}, we find the position
such that lymp = max{h| jn — 1 € Jimp and ju € Fimp}-
The next test error pattern t, is obtained such that

) In,
jh = Jr — 11
k—1+4h,
Hereafter we call this method, which generates 7, from t7,,
the GS generation rule B.

for1< h <y
for h = Ia;
for Ia <h <L

(11)

for 1 £ h < Iimp;
for h = Limp;
for Iimp <R L 1.

(12)

[The GS Decoding Algorithm]
1) Generate &y := bé, and set L := L(C¢), Wpest := 0,
A:=0and!:=1.

2) a) Generate ty;, € T and calculate A(tz,). If L <
A(tg,), then output émL := Cp @ Wyesr and stop. Oth-
erwise generate w gy, =ty G.

b) Calculate A(w 7, ). If A(7,) < A, then A := A( 7,),
L:=L(Zs) + A, Wress 1= w7, and 1:= 2.
3) a) Generate t, from t7;,_, by the GS generation rule A.
b) Calculate A(tz;). If L < A(tgz,), then try to gener-
ate the next error pattern ty, by the GS generation
rule B, otherwise go to c). If there exists t7,, then set
tg, :=t7, and go to b), otherwise go to 4).
c) Set Wz, :=t7G and calculate A(w7,). If A(z,) <
A, then A= A(d7,), L := L(€p)+ A and Wyese := W 7;.
Set i := 1+ 1 and go to a).
4) Set I : =14 1. If | £ , then go to 2), otherwise output
ML = Cg B Wpesr and stop. D

(1) : Among a set of test error patterns with the same Hamming
weight, test error patterns are generated in binary order.
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4. Sufficient Conditions based on a Order
Relation

4.1 A Condition for Eliminating Unnecessary
Test Error Patterns

Similar to eq.(6), if we find out that a test error pattern
ts cannot give the best candidate codeword, the test er-
ror pattern is eliminated before encoded to w.y. Then the
number of iterations (for constructing test error codewords)
can be reduced and this saves the large number of computa-
tions. Furthermore, unlike eq.(6), if we find out that a test
error pattern t7 cannot give the best candidate codeword
without any real operations, we can save the number of real
operations.

For t 7, let a subset 12(.7) of V™ be defined such that
UT)={z|zj=ts;1<j<kand wg(z) 2 d}.(13)

For a nonempty set L?(J ), let @ 7 denotes the binary vector
such that A(z) = AlU(T)].
[Definition 4] For two vectors © = (31, 2,...,0n) € "
and & = (£,%2,...,%n) € V™, define two location sets
Du(v, &) with a € {0,1} as

Da('ﬁ, fB) = {J | fl¢(j] =1 and f¢[j) =a}, GE{O,I}, (14)

where ¢ denotes the permuation function such that & =
#(Z) € V" ie., b4 = 65 and |04(;)| 2 |8s(,41)| for
1£5<n. (]
{Theorem 1] For a test error pattern tz, assume that
there is a order relation such that

Di(ig, &9) <s Do(it7, &s), (15)

then é7 cannot be better than &y where ¢7 = ¢p H 15G.

Proof: Assume that Do(@7,&8) = {J1,72,-.-.Jm} and
Di(ey, €s) = {51, 33.+--, 30} such that j1 < j2 < -+ < Jm
and j{ < j; < -+ < ji,. By Defd, for each element of
Dot 7, €g), o € {0, 1} satisfies

Bt 2 18ain] 2+ 2 184,01, (16)
o] 2 10sip] 2 2 1050, - (17)
By the order relation Do(i 7, €p) <s Di(it7, &), m' < m
and |f4(,,)| 2 |9.¢U;‘)| for 1£h<m',
Equation (7) expands as follows:

Mazy= Y Bew)l= D 1Bern]>0.018)
1€Dali g ,2q) JED) (R 7,89)
Since A(W 7) 2 A7), from eq.(8)
L(e7) 2 L(es) + Alits) 2 L(z). (19)
Then &7 is not better than &y. a

By Theorem 1, if eq.(15) holds for a test error pattern t 7,

then we can eliminate ¢ty without encoding. Therefore we
will call eq.(15) Elimination Criterion.
[Lemma 1] Assume that there is a order relation such
that D,(uy.&p) <s Do(us,&p). For any tg #F tz such
that ¢t <v ty, €7/ cannot be better than ¢ where
ep =te @ty G

Proof: The order relation such that t7 <v 7+ indicates

Al ge) > Ag). (20)
Then A(it5:) > 0. By eq.(20) and the equation such that
A(wz1) > A z1), L(e57) > L(Ca). o

In[8], a criterion for eliminating any test error patterns
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with Hamming weight [ called Covering Test has been pro-
posed in the Least Reliable Basis based soft decision decod-
ing. Elimination Criterion can be regarded as a dual version
of Covering Test. Covering Test is a termination criterion
which is applied to only the first element t7, € 7;, gener-
ated by the GS generation rule A. If 5, € 7; satisfies the
Covering Test (or Elimination Criterion), then all elements
in 7 can be eliminated by Lemma 1 because there is order
relations t7, <y tg; for t7 € Ti,+ > 1. On the other hand,
Elimination Criterion in this paper can be used for any test
error patterns since it is not an explicit termination condi-
tion. For tg, € Ti, Covering Test is based on the general-
ized Hamming weight [11] and &7, such that 7, <v g,
is used in the notation of this paper. Although we consider
the MLD for arbitrary long codes whose Hamming weights
are rarely known, the Elimination Criterion is more strin-
gent than Covering Test since &7, <v 7. However, test
error patterns cannot be predetermined as in[8).

For t7 and &.r € € which has been already_obtained
bafore generating t7, let a subset U(J, &) of V" be de-
fined such that

UJ ey ={z |z, =t7, 1< j<k, (21)
wg(z) 2 d and dy(x, &) 2 d}.

For a nonempty set U(J, &rer), let @ 7(€r.1) denotes the bi-
nary vector such that A(%7(&rer)) = AU(T, Erer)].

[Theorem 2] For a test error pattern t7, assume that
there is a order relation such that

Dy (g (Erer). €9) <s Dol 7(Erer), €a), (22)
then €7(€rer) cannot be better than ¢y where ¢y = ¢y ®
tgé. m}
[Lemma 2] For atest error pattern t 7 and &.; & 07, there
is a order relation ity <y U7 (€ret). 0

[(Theorem 3] For a test error pattern t7 and é&.¢ % O°,
Elimination Criterion holds for t7 only if eq.(22) holds.

Proof: By Lemma 2 and the definitions of %5 and
it 7(Cret ), there are relations such that

Do(irtr, e0) L5 Do(7(Cret), E0), (23)

D[('&J,é@) = D]('il/](éref)yé@). (24)
Hence, Elimination Criterion holds only if D;(i7, &) <s
Dy(g,ép). o

Theorem 3 indicates eq.(22) is the necessary condition of
Elimination Criterion. Therefore, eq.(22) is more stringent
version of Elimination Criterion.

We consider the case when Elimination Criterion is ap-
plied to the GS decoding algorithm. In the GS decoding
algorithm, each time a test error pattern tg, is generated,
we test if eq.(6) holds for tg,. If eq.(6) holds, several suc-
cessive test error patterns t7, such that t7, <v t7,.7 < s,
as well as £ 7, are eliminated (see the GS generation rule B).
When %7, is generated, we suppose that Elimination Crite-
rion is tested with respect to t7,. If Elimination Criterion
holds for t7,, Elimination Criterion also holds for ¢ 7, such
that ¢7, <v ts,. Then if Elimination Criterion holds for
tg,, we can also adopt the GS generation rule B. Remark
that no real operations are required in this case, because we
need not to compute A(ty,).

4.2 Conditions for Omitting Unnecessary Met-

rics Computations

Hereafter we consider the case in which t7 does not sat-
isfy the Elimination Condition and is encoded to w_y. If we
find out ¢ cannot be the best candidate codeword without
any real operations, than the computation of eq.(7) can be
omitted.

[(Theorem 4] For a test error codeword gy, assume



that there is a order relation such that D,(w7,&s) <s

Do(7,€p). Then &5 cannot be better than &, where
Cr=CpDwys.
Proof: Assume that Do(d 7, &p) = {J1.52,.--,Im} and

Di(wg,ep) = {J1. 72+ s Jiprt such that 31 < j2 < +++ < Jm
and j; < j2 < --- < 4. Then eq.{16) and (17) hold. Equa-

tion (7) is now
A g) = Z |6~¢,(J)|— Z
JED1 (D 7,89)

JEDo (i 7.89)

Therefore L(¢y) = L(€9) + A(Ww7) 2 L(eg). [}

850y >0.(25)

The order relation such that D, (1 7, &) <s Do{W 7. &g)
can be used to find the test error codewords whose reliabil-
ity loss need not to be computed. Hereafter, we call the test
of this order relation Omitting Criterion A.

Theorem 4 implies that w7 is compared with wy = 0"
and judeged if A(w 7,) > A(wp) = 0. At a decoding stage of
constructing 1 7,, the best test error codeword . in C; is
not necessarily equal to #g¢. Since A(w.) < 0 for w. % 07,
if we can compare w7, with w., we can expect that the
Omitting Criterion A be more effective.

At a decoding stage of constructing 1 7, let é. and é. be
such that ¢, = é, $ w. and é. = z H é..

[Lemma 3] At a decoding stage of constructing w7,
L(2y7) is calculated as follows:

L(é7) = L(2.) + Al & b 7). (26)

Proof: Since é¢g = ¢. @w. and €. = zP ¢é.. the left hand
side of eq.(26) expands in the following way.

L(ér)=L(cp@dws) = L(e. ®w. dw7)

= (Ee B e B 107,5)[6]

j=1
=D e lll+ Y (1= 260,) (505 ® 7,516,
i=1 j=1
= L(e.)+ Alw. & w 7). (27)
Hence we have eq.(26) and the proof is completed. o

Equation (26) shows the relation between €. and é.

[Theorem 5] For a test error codeword w 7,, assume that
there is a order relation such that

Diy((. Dwy;) e.) <s Do((W« ® ), €x), (28)

then ¢, €5, = ¢p @ ws,, cannot be better than é&.. O

In general, wy(é.) such that é. F &g, is smaller than
wp(ep) [8]. Consequently, we have the more stringent crite-
rion for omitting unnecessary computations of eq.(7) than
the Omitting Criterion A since |D((%. @ w7;), &.)| tends
to be small and (w. @ w7) £v W. (this equation is led by
Generation Condition of test error patterns). We will call
the order relation eq.(28) Omitting Criterion B.

[Corollary 1] For w7 and w.. Omitting Criterion B holds
only if t. <v t7 where w, = t.G. a
This result is from Generation Condition of test error pat-
terns. Therefore, for w 7, we adopt Omitting Criterion A if
t. £v t7, and adopt Omitting Criterion B otherwise.

5. Simulation Results

In this section, we present simulation results for the binary
(63.30,13) BCH code and the binary (127,64,21) BCH code
in order to evaluate eflectiveness of the proposed criteria.
The results are obtained by simulating 10000 codewords for
each SNR (E,/No [dB]) and the average values are shown in
tables. The proposed criteria are applied to the GS decod-
ing algorithm and we compare the results with the original

Table 1 The number of constructed test error codewords for the
(63, 30,13) BCH code and the (127,64, 21) BCH code
Ey/No §§3,30) cocgc Ey/No ((;1527,64) c:ol::iz7
2.00 [8.08-10%7 [807-10°| 3.00 [1.78-10° | 1.78- 10°
2.50 [3.77-102 [3.76-10° | 350 |2.05 107 |2.05.10%
3.00 [1.60-102]1.59-10% | 4.00 |2.69.10° | 2.67.103
3.50 [6.10-10" [5.96.-107 | 4.50 |4.15.10%7 | 3.98 . 107
4.00 [2.39-107 [2.24-107 | 500 [7.92-10' | 6.75 10!

4.50 9.91 8.67 5,50 [1.86-101] 1.2- 107
5.00 3.71 2.86 6.00 4.95 2.07
5.50 1.42 0.90 6.50 1.30 0.27

Table 2 The number of real operations for the (63,30,13) BCH
code

Eb/ND GS Ocﬁx Ocadapv. EC + OCadapt
2.00 |2.04.10%7 [6.92.10° [5.94-10° 5.94.10°
2.50 |9.36-10% [3.08-10° [ 2.57- 103 2.57 108
3.00 |[3.88-10°[1.21-10°[8.80-107 8.77 - 10°
3.50 [1.43.10% [4.26.10% [ 2.99-107 2.96 - 107
4.00 |5.49.10° [1.42-10% [ 9.20- 107 8.91-10'
4.50 |2.26.10% [5.71-10" [ 4.01- 107 3.76 - 107
5.00 [8.39.10' [2.03-107 [1.27- 10T 1.06 - 10!
550 |3.31-107 7.63 5.76 4.23

Table 3 The number of real operations for the (127,64, 21) BCH

Eb/NO G5 OCs, Oca.dapv. EC + Ocadapt
3.00 [8.04-10° [2.38.10% [1.63-10°F 1.63 - 10°
3.50 [8.80.10° [2.69-10° | 1.55-10° 1.55 - 10°
4.00 [1.10-10° [3.38 107 [ 1.59-107 1.59 . 107
450 [1.62-107 [4.03.10° [ 1.85-10° 1.82-10°
5.00 [2.99.10° [5.83.10° [ 2.89-107 2.70 . 10°
5.50 |[6.86.10%(8.25 10" [ 4.73-10! 3.82 - 107
6.00 |1.82-10°%{1.93.10! [1.33-10! 8.78
6.50 [4.94.107 5.59 4.80 2.74

of eq.(7) for the

Table 4 The number of computations
(63,30, 13) BCH code

Ey/No GS OCgx OC.dapt
2.00 [8.08-10° [ 1.95-10%7 | 1.48-10°
2.50 |3.77-107 | 8.89-10' | 6.39.10!
3.00 [1.60-107 | 3.56-10"7 | 1.96.107
3.50 [e6.10-10' | 1.32-10! 6.85
4,00 [2.39-10! 4.24 1.76
4,50 9.91 1.65 7.96 .10~ T
5.00 3.71 542.1071 [1.56-10"!
5.50 1.42 1.36-10"! [ 4.02-10~2

Table 5 The number of computations of eq.(7) for the
(127,64, 21) BCH code

Eb/NO GS OChy Ocadapt
3.00 [1.78-10°] 3.43.10% | 1.49 10
3.50 [2.05-107] 456.10° | 1.50-10°
4.00 [2.69-10° | 6.52.10% | 1.63.102
450 [4.15-102| 797-10! | 1.86.10!
5.00 [7.92-107 ] 1.16-10! 3.19
550 |1.86-10! 1.40 3.77 - 1071
6.00 4.95 2.61.10"1 [8.40-10~2
6.50 1.30 2.86-102 | 5.40- 103

GS decoding algorithm.

Consider the following four modifications of the GS de-
coding algorithms.

(1) [the algorithm-EC]: each time a test error pattern t is
generated, first Elimination Criterion is tested. If Elimi-
nation Criterion holds for t7, then we generate the next
test error pattern following to the GS generation rule B.
Otherwise, eq.(6) is tested as well as the original GS de-
coding algorithm. In tables, this algorithm is denoted
with EC.

(2) [the algorithm-OCsy]: each time a test error codeword
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w 7 is constructed, Omitting Criterion A is tested if w7
gives a better candidate codeword than &p. If Omitting
Criterion A holds for 1 7, then we omit the calculation
of eq.(7) and generate the next error pattern. In tables,
this algorithm is denoted with OCg,.

(3) [the algorithm-OCi,qapt]: each time w 7 such that b 7 =
t7G is constructed, either Omitting Criterion A or B is
adaptively tested. As stated in Sect.4.2, Omitting Crite-
rion A is applied if t. £v t7, and Omitting Criterion B
is applied otherwise. In tables, this algorithm is denoted
with OC,4ape.

(4) [the algorithm-(EC + OCidapt)]: each time a test er-
ror pattern ts is generated, first Elimination Criterion
is tested. If Elimination Criterion holds for t7, then we
generate the next test error pattern following to the GS
generation rule B. Otherwise, eq.(6) is tested as well as the
original GS decoding algorithm. When £ 7 is constructed,
then either Omitting Criterion A or B is adaptively ap-
plied, similar to the the algorithm-OC.dape. In tables,
this algorithm is denoted with EC + OC,qapt-

In tables, we show the results of the following simulations.

(1) In order to evaluate the effectiveness of Elimination Cri-
terion, we compare the average number of constructing
test error codewords in the original GS decoding algo-
rithm and the algorithm-EC. The results are shown in
Table 1.

(2) In order to evaluate the effectiveness of Elimination Cri-
terion, Omitting Criterion A and B, we compare the aver-
age number of real operations in each decoding algorithm.
The results are shown in Table 2 and 3.

(3) In order to evaluate the effectiveness of Omitting Crite-
rion A and B, we compare the average number of compu-
tations of eq.(7) in the original GS decoding algorithm,
the algorithm-OCg, and the algorithm-OCa.qsp:. The re-
sults are shown in Table 4 and 5.

We show the results of Table 1 as follows. At high SNR,
for both (63,30,13) BCH code and (127,64,21) BCH code,
the number of candidate codewords in the algorithm-EC is
from 1/2 to 2/3 that in the original GS decoding algorithm.
This values indicate that Elimination Condition works well.
At middle to low SNR, however, the number of candidate
codewords is almost the same in both decoding algorithm.
The reason is, wr{eg) is generally large at middle to low
SNR, then eq.(6), which is updated each time the best can-
didate is obtained, works better than Elimination Criterion,
whose effectiveness largely depends on wg(eg).

From table 2 and 3, the number of real operations in the
original GS decoding algorithm is the largest and that in the
algorithm-OCy¢, is the second largest. Even the algorithm-
OCsx reduces the number of real operations about 1/3 for
the (63,30,13) code and 1/4 for the (127,64,21) code com-
pared with the original GS decoding algorithm. The num-
ber of real operations for the algorithm-OC,4ap. is the third
largest and for the algorithm-(EC 4+ OC,qap: ) is the smallest
at each SNR for both codes. At low SNR, however, there is
no difference between the numbers of real operations for the
algorithm-OC,q,p: and the algorithm-EC + OC, 4,1, since,
as we see the result of Table 1, Elimination Criterion hardly
works and the efficiency of both algorithms are totally de-
pends of Omitting Criteria. It is noteworthy that, even at
low SNR, the numbers of real operations in the algorithm-
OC.4apr and algorithm-(EC 4 OC,4ap) are about 1/4 for
the (63,30,13) code and 1/5 for the (127,64,21) code, respec-
tively, compared with the original GS decoding algorithm.

From Table 4, Omitting Criterion A in algorithm-OC,4ap:
holds for more than 3/4 test error codewords for (63,30,13)
code the at each SNR. From Table 5, the rate which Omit-

ting Criterion A in algorithm-OC,aap: holds increases up
to 4/5 for the (127,64,21) code at each SNR. These results
imply that &y is a good candidate as the initial codeword
in the MRB based decoding algorithms. The values for the
algorithm-OC, 4, p show the effectiveness of adaptive proce-
dure in which the reference codewords are selected in accor-
dance with an order relation. It is noteworthy that, at high
SNR, the number of computation of eq.(6) in the algorithm-
OC,qapr is almost negligible for both (63,30,13) code and
(127,64,21) code.

6. Concluding Remarks

In this paper, we derived two types of criteria for the MRB
based MLD algorithm. The first one is a criterion for elim-
inating test error patterns for which it is impossible to give
the ML codeword. The second one is a criterion for omitting
metrics computations of candidate codewords which cannot
be the ML codeword. For implementation of these criteria,
we need not real number operations and, in consequence,
it can be concluded that the algorithm applying criteria al-
ways reduce (or at most the same as) the computational
complexity compared to the conventional algorithm. The
results of computer simulation show the effectiveness of the
proposed criteria for the (63,30,13) and the (127,64,21) BCH
code in the GS decoding algorithm. The proposed criteria
is applicable to other MRB based MLD. algorithm such as
one in [3]. As future improvements, more stringent criteria
that eliminate unnecessary test error patterns need to be
derived.
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