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Abstract— In this paper, reliability-based heuristic search
methods for maximum likelihood decoding of block codes
are considered. Based on the decoding algorithm by Battail
and Fang (and its improved technique by Valembois and
Fossorier), we deduce a method of reducing the space com-
plexity of the heuristic search maximum likelihood decod-
ing algorithm. The proposed method is applicable to the
heuristic search method with a certain class of evaluation
functions. Simulation results show the efficiency of the de-
coding algorithm adopting the proposed method.
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1 Introduction
Maximum likelihood decoding (MLD) of block codes min-

imizes the probability of decoding error when we assume that
all codewords have the equal probability to be transmitted.
Since the complexity of searching the maximum likelihood
(ML) codeword among all codewords is significantly large,
many researcher have devoted to develop efficient algorithms
of MLD. One of the most efficient MLD algorithms is the
reliability based decoding algorithm that uses the column
permuted generator matrix in increasing order of reliability.

In this paper, we consider heuristic search MLD algo-
rithms where candidate codewords are generated in increas-
ing value of the evaluation function. G. Battail and J. Fang
have proposed a priority-first search method for MLD where
the most simple (and primitive) evaluation functions are em-
ployed [1] (we will call this method the BF decoding al-
gorithm). Recently, A. Valembois and M. Fossorier have
proposed a technique for reducing the space complexity in
the BF decoding algorithm with the same class of evalua-
tion functions [4]. Since this kind of evaluation functions
employed by both decoding algorithms are the most sim-
ple ones, we need to generate more candidate codewords
than in the decoding algorithm with more sophisticated ones
[2, 3, 5]. We can modify the BM decoding algorithm to per-
form priority-first MLD even when we use sophisticated eval-
uation functions [6], however, we cannot adopt the improved
technique by Valembois et al. in this case.

In this paper, we propose a method for reducing the
space complexity of the priority-first MLD algorithm with
effective evaluation functions, which are presented in [3, 5].
Consequently, we show, by computer simulations, that space
complexity of the decoding algorithm employing the pro-
posed method is significantly reduced.

2 Reliability based MLD Algorithm
Let C be a binary linear (n, k, dH) block code of the code

length n，the number of information symbols k and the min-
imum distance dH. We denote a generator matrix of C by
G and the weight profile of C by WH(C). We assume any
codewords c = (c1, c2, . . . , cn) ∈ {0, 1}n of C are transmitted
over Additive White Gaussian Noise (AWGN) channel. A re-
ceiver demodulates a received sequence r = (r1, r2, . . . , rn)

∗ Dept. of Industrial and Management Systems Engineering,

Waseda University, 3-4-1 Ohkubo Shinjuku-ku, Tokyo, 169-

8555 Japan, E-mail: yagi@hirasa.mgmt.waseda.ac.jp

∈ Rn into a sequence θ = (θ1, θ2, . . . , θn), θj = ln
P (rj |cj=0)

P (rj |cj=1)
,

where P (rj |cj) represents the likelihood of symbol cj , and
inputs it into a soft-decision decoder1. Furthermore, a hard-
decision sequence z = (z1, z2, . . . , zn) ∈ {0, 1}n is obtained
by setting zj = 0 if θj ≥ 0 and zj = 1 otherwise. The soft-
decision decoder estimates the transmitted codeword from
θ and z, and output the estimated codeword at the end of
decoding.

In reliability-based decoding algorithms, we first find
the most reliable and linearly independent (MRI) k posi-
tions. Then, we permute columns of a generator matrix
over MRI positions in increasing value of reliability. The
rest of columns are also reordered in increasing value of reli-
ability. We perform the standard row operation with respect
to the reordered matrix to make the leftmost k columns the
identity matrix. We denote the resultant matrix by G̃.

Let θ̃ = (θ̃1, θ̃2, . . . , θ̃n) and z̃ = (z̃1, z̃2, . . . , z̃n) be per-
muted sequences of θ and z, respectively, in the same or-
dering of columns of G̃. We denote the equivalent code to
C by C̃, whose codewords are generated by G̃. Let u =
(u1, u2, . . . , uk) ∈ {0, 1}k be the leftmost k symbols of z̃,

i.e., uj = z̃j , 1 ≤ ∀j ≤ k. The decoder first encodes u by G̃

to obtain the initial codeword c̃∅(=uG̃). Afterwards, k di-
mensional vectors, called test error patterns, are iteratively
generated and encoded by G̃. For a location set J ⊆ [1, k],

the test error pattern tJ =(tJ,1, tJ,2, . . . , tJ,k)∈{0, 1}k is de-
termined by setting tJ,j = 1 if j ∈ J and tJ,j = 0 otherwise

(J is called the support of tJ). Then，c̃J = c̃∅ ⊕ tJG̃ is a
candidate codeword and this procedure is repeated until a
sufficient condition for the ML codeword is satisfied2.

For a binary vector v = (v1, v2, . . . , vn) ∈ {0, 1}n, we
define the correlation discrepancy [4] of v as

L(v) =
X

j|vj 6=z̃j

|θ̃j |. (1)

Then c̃best is the ML codeoword if and only if L(c̃best) =
minc̃∈C̃ L(c̃).

3 Battail-Fang Decoding Algorithm
Battail et al. have presented a method for generating test

error patterns in increasing value of the evaluation function
defined as

∆(tJ) =
X
j∈J

|θ̃j |. (2)

Let F be arbitrary evaluation function. If F satisfies the
following two conditions, the BF decoding algorithm per-
forms priority-first search of test error patterns [4].

(C1) F (tJ) ≤ F (tJ∪{jm}), for jm 6∈ J.

(C2) F (tJ) ≤ F (tJ′) ⇒ F (tJ∪{jm}) ≤ F (tJ′∪{jm}),

for jm 6∈ J and jm 6∈ J ′.
The function ∆ actually satisfies (C1) and (C2).

1 Since the probability of decision error of zj becomes smaller as

the value of |θj | is larger, |θj | is called reliability.
2 ⊕ represents Exclusive OR operation.



Consider k lists of test error patterns M1, M2, . . . , Mk.
The test error pattern tJ with a support J such that J ⊆
{1, 2, . . . , jm} and jm ∈ J is supposed to be in Mjm

3. Then
for any test error pattern tJ such that J 6= ∅, the list for
storing it is uniquely determined. In a list Mj , 1 ≤ ∀j ≤
k, test error patterns are ordered in increasing value of an
evaluation function F .

By the condition (C1), the test error pattern with the
minimum value of F in Mj , 1 ≤ ∀j ≤ k, is t{j} with the Ham-
ming weight one. For j = 1, 2, . . . , k, we set Mj = {t{j}}
after the initial codeword c̃∅ is obtained. Then, the decoder
searches the test error pattern with the minimum value of F
(we will call this pattern the best pattern) among the set of
ones which have not been found. In the decoding algorithm
described below, for any candidate codeword c̃J(= c̃∅⊕tJG̃)
given by tJ , we assume

F (tJ) ≤ L(c̃J). (3)

Furthermore, for a test error pattern tJ ∈ Mjm , we call
tJ∪{j}, ∀j > jm, the extended pattern of tJ .

[The BF decoding algorithm]

S1) Set c̃best := c̃∅ and L := L(c̃∅).
S2) Choose the best pattern tJ ∈ Mjm among the topmost

test error patterns in non-empty lists Mj , 1 ≤ j ≤ k. If
F (tJ) ≥ L, then output c̃best and halt the algorithm.

S3) Generate the next candidate codeword by c̃J := c̃∅ ⊕
tJG̃. If L(c̃J) < L, then set L := L(c̃J) and c̃best := c̃J .

S4) At the end of all lists Mj , ∀j > jm, store the extended
pattern tJ∪{j}. Delete tJ from Mjm .

S5) If Mj = ∅ for all j = 1, 2, . . . , k, then output c̃best and
halt the algorithm. Otherwise, go to S2)． 2

Valembois et al. have proposed an improved method for
choosing the best pattern at S2) where we cost at most
dlog2 ke comparison operations in [4]4. First, we prepare
a binary tree with k leaves where each leaf is allocated to
one list Mj . Let the evaluation value of a leaf be that of the
topmost test error pattern in Mj . Each node represents one
of its successor nodes with the smaller evaluation value. By
adopting this relation from leaves to the root node recur-
sively, the root node represents the list whose topmost test
error pattern is best. We need O(k) comparison operations
to construct this initial tree, however, at most dlog2 ke com-
parison operations are only needed in step S2). In the fol-
lowing, the BF decoding algorithm indicates the algorithm
with this improved technique.

By (3), the inequality at S2), F (tJ) ≥ L, represents
a sufficient condition that c̃best is the ML codeword. If a
tighter sufficient condition for optimality is employed, we
only need to generate less candidate codewords to perform
MLD. The evaluation function in [3, 5] is more effective than
∆ in the sense that it can be a tighter sufficient condition.

For ∀c̃ ∈ C̃, let c̃L and c̃R be the leftmost k symbols
and the rightmost n− k symbols of c̃, respectively, i.e., c̃ =
c̃L ◦ c̃R5. For some c̃ref(= c̃L

ref ◦ c̃R
ref) ∈ C̃, we define

T (tJ , c̃ref) =
n

(tJ ⊕ u) ◦ v
˛̨
v ∈{0, 1}n−k,

and wH(tJ) + dH(c̃R
ref ,v) ∈ WH(C̃)

o
, (4)

where wH(·), dH(·, ·) are the Hamming weight and the Ham-
ming distance. Then the evaluation function in [3, 5] is de-

3 i.e., jm = max J if tJ ∈ Mjm .
4 In [4], a method for reducing the space complexity of the BF de-

coding algorithm with evaluation functions (∆) satisfying con-

dition (C1) and (C2) has been proposed, however we do not

describe it in details here.

fined as,

f(tJ , c̃ref) = min
v∈T (tJ ,c̃ref )

n
L(v)

o
. (5)

Since L(v) = ∆(tJ) +
Pn

j=k+1(z̃j ⊕ vj)|θ̃j | ≥ ∆(tJ) for
∀v ∈ T (tJ , c̃ref), f can give a tighter sufficient condition for
optimality than ∆. Remark that f satisfies (C1) but does
not necessarily satisfy (C2) [6]. Therefore, when we store an
extended pattern into a list at S4), we need to insert it at
the position such that the list remains in increasing value of
the evaluation function. In this case, we modify S4) such as

S’4) For all lists Mj such that j > jm, insert the extended
patterns tJ∪{j} at the position such that the list re-
mains increasing order. Delete tJ from Mjm .

By this modification, the priority-first search of the BF de-
coding algorithm is maintained [4]．

We here describe the complexity of the BF decoding al-
gorithm. In a decoding procedure of a received sequence r,
the space complexity is O(k×M(r)) where M(r) represents
the maximum number of test error patterns stored in lists.
As for the time complexity, the number of generating test
error patterns is dominant as well as the number of encoding
them.

4 Proposed Decoding Algorithm
In this section, we propose a method for reducing the

space complexity of the BF decoding algorithm with evalu-
ation functions that do not satisfy the condition (C2).

We here define a condition of a evaluation function F .

Definition (C3) For ∀J ⊆ [1, k]，if j1, j2 6∈ J and 1 ≤ j2 <
j1 ≤ k, then a function F satisfies

F (tJ∪{j2}) ≥ F (tJ∪{j1}). (6)

2

For the function f , we show the following lemma.

Lemma 1 The evaluation function f satisfies the condition
(C1) and (C3).

(Proof ) We first show that the function ∆ satisfies (C3).

By (2), for tJ such that j1 6∈ J , ∆(tJ∪{j1}) =
P

j∈J∪{j1} |θ̃j |
= ∆(tJ) + |θ̃j1 |. Since |θ̃j | ≥ |θ̃j+1| for 1 ≤ j ≤ k−1, if
1 ≤ j2 < j1 and j2 6∈ J , then

∆(tJ∪{j2}) =
X

j∈J∪{j2}
|θ̃j |+ |θ̃j1 | − |θ̃j1 |

= ∆(tJ∪{j1}) + |θ̃j2 | − |θ̃j1 | ≥ ∆(tJ∪{j1}).
Therefore, the function ∆ satisfies (C3).

For tJ and c̃ref ∈ C̃, let v∗ = (v∗1 , v∗2 , . . . , v∗n) be such
that f(tJ , c̃ref) = L(v∗). Then by (1) and (5),

f(tJ , c̃ref) = L(v∗) = ∆(tJ) +

nX

j=k+1

(z̃j ⊕ v∗j )|θ̃j |. (7)

The summation of the right hand side of (7) depends only
on Hamming weight of tJ . Therefore, if j1, j2 6∈ J and 1 ≤
j2 < j1, then

f(tJ∪{j2})− f(tJ∪{j1}) = ∆(tJ∪{j2})−∆(tJ∪{j1}), (8)

and this implies that the function f satisfies (C3). 2

In the following, we consider evaluation functions that sat-
isfy both (C1) and (C3).

5 ◦ represents concatenation of vectors.



The strategy of the proposed method is like lazy evalua-
tion where any test error patterns are not generated as long
as possible. This approach is similar to an improved method
in [4]. We first consider k lists Mj as in the BF decoding
algorithm. By the condition (C1), the best pattern among
all test error patterns in a list Mj , 1 ≤ ∀j ≤ k, is t{j}. Fur-
thermore, by the condition (C3), the best pattern among k
test error patterns t{j}, 1 ≤ ∀j ≤ k, is t{k}. Therefore, we
construct the initial lists as

Mj =

 {t{j}}, if j = k;
∅, otherwise,

(9)

Similar to an improved method of [4], if the proposed method
uses a binary tree whose leaves correspond to k lists, no
comparison operations are needed to construct the initial
tree.

At S2) of the BF decoding algorithm, if tJ ∈ Mjm is
chosen as the best pattern, k − jm extended pattern of tJ

will be stored at S4). However, it is enough to store only its
extended pattern tJ∪{k} in the list Mk, since the condition
(C3) guarantees F (tJ∪{j}) ≥ F (tJ∪{k}) for j < k.

Following this modification, we need to determine when
other extended patterns tJ∪{j}, j < k, are inserted into
lists. Assume that a test error pattern tJ∪{jm}, jm 6∈ J,
is stored in the list Mjm during a decoding procedure. Then
extended patterns tJ∪{j}, j < jm, cannot be the best pat-
tern at S2), since the condition (C3) guarantees F (tJ∪{j}) ≥
F (tJ∪{jm}). Therefore these extended patterns need to be
stored only after tJ∪{jm} is chosen as the best pattern at
S2).

Assume that tJ∪{jm} is chosen as the best pattern at
S2). By the condition (C3), if jm−1 > max J , the extended
pattern tJ∪{jm−1} has the smallest value of F next to tJ∪{jm}
among extended patterns, i.e.,

F (tJ∪{jm−1}) = min
tJ∪{j}

n
F (tJ∪{j})

˛̨
j 6∈ J, j < jm

o
. (10)

Therefore, after choosing tJ∪{jm} as the best pattern at S2),
tJ∪{jm−1} is inserted into the list Mjm−1. This modification
reduces the space complexity significantly. Note that the
next candidate pattern tJ∪{jm−1} is easily obtained from the
best pattern tJ∪{jm}.

We describe a decoding algorithm employing the above
method. Before the following algorithm is performed, the
decoder constructs the initial binary tree.

[The proposed decoding algorithm]

P1) Set c̃best := c̃∅ and L := L(c̃∅).
P2) Choose the best pattern tJ ∈ Mjm from non-empty lists.

If F (tJ) ≥ L, then output c̃best and halt the algorithm.
P3) Generate the next candidate codeword by c̃J := c̃∅ ⊕

tJG̃. If L(c̃J) < L, then set L := L(c̃J) and c̃best := c̃J .
P4) a) If jm−1 6∈ J , then insert tJ′∪{jm−1} into the list Mjm−1

where J ′ = J \ {jm}.
b) If jm 6= k, then insert tJ∪{k} into the list Mk. Delete

tJ from Mjm .
P5) If Mj = ∅ for ∀j = 1, 2, . . . , k, then output c̃best and

halt the algorithm. Otherwise, go to S2). 2

The step P4) corresponds to the above modification.
We show the validity of the proposed decoding algo-

rithm.

Theorem 1 Assume that an evaluation function F satisfies
both (C1) and (C3). During a decoding procedure, if tJ

is the best among the set of all test error patterns which
has not been chosen as the best pattern, then such tJ has
been already generated and stored in the list Mjm such that
jm = max J .

(Proof ) We first consider the following two cases.
(1) In the case of tJ ∈ Mk.

By the condition (C1), tJ′ such that J ′ = J\{k} satisfies
F (tJ′) ≤ F (tJ). Therefore, when we assume F (tJ′) has
been chosen as the best pattern at P2), then tJ has been
into the list Mk at P4-b).

(2) In the case of tJ ∈ Mjm , jm 6= k.
From the condition (C3), tJ′ such that J ′ = J \{jm} ∪
{jm+1} satisfies F (tJ′) ≤ F (tJ). When we assume F (tJ′)
has been chosen as the best pattern at P2), then tJ has
been stored in a list Mjm at P4-a).
Since the first test error pattern t{k} has been generated

when initial lists has been constructed by (9), the assump-
tions of (1) and (2) are satisfied by mathematical induction.

2

When an extended pattern is inserted in a list at P4),
sorting is needed to keep the list in increasing value of F
and this complexity may be large6. In the following, if a
evaluation function F satisfies a certain condition, we show
that the time complexity is reduced.

Definition (C4) For J, J ′ ⊆ [1, k] such that j1, j2 6∈ J ∪ J ′

and 1 ≤ j2 < j1 ≤ k, a function F satisfies,
F (tJ∪{j1}) ≤ F (tJ′∪{j1}),

⇒ F (tJ∪{j2}) ≤ F (tJ′∪{j2}). (11)
2

Assume that a function F satisfies (C4). When a test
error pattern is inserted into Mk at P4-b), we need sorting
to keep a list in increasing value of F . However, during
a decoding procedure, the best pattern tJ∪{jm} such that
jm 6∈ J is chosen from Mjm , it is enough to store tJ∪{jm−1}
at the end of Mjm−1 from the condition (C4). In case that
the proposed decoding algorithm employs a function that
satisfies (C4), P4) can be modified as follows:

P’4) a) If jm−1 6∈ J , then store tJ′∪{jm−1} at the end of
Mjm−1 where J ′ = J \ {jm}.

b) If jm 6= k, then insert tJ∪{k} into the list Mk.
Delete tJ from Mjm .

For the function f , we show the following lemma.

Lemma 2 The evaluation function f satisfies (C4).

(Proof ) By (8)，the following equation holds．

f(tJ∪{j2})− f(tJ∪{j1}) = f(tJ′∪{j2})− f(tJ′∪{j1}). (12)

By transposing (12),

f(tJ∪{j1})− f(tJ′∪{j1}) = f(tJ∪{j2})− f(tJ′∪{j2}). (13)

Then f(tJ∪{j2}) ≤ f(tJ′∪{j2}) if and only if f(tJ∪{j1}) ≤
f(tJ′∪{j1}). 2

If the function f is employed by the proposed decoding
algorithm, P’4) instead of P4) can be used. This saves the
time complexity for sorting.

In terms of the time and space complexity of the pro-
posed decoding algorithm, we show the following theorems.
Theorem 2 The proposed decoding algorithm achieves
MLD. Then, the maximum list size in the proposed decoding
algorithm is less than that of the BF decoding algorithm, if
both decoding algorithms employ the same evaluation func-
tion satisfying (1) and (3). 2

Theorem 3 The number of generating test error patterns
in the proposed decoding algorithm is no more than that
in the BF decoding algorithm, if both decoding algorithms
employ the same evaluation function satisfying (1) and (3).

2

6 Since the total list size is reduced compared to that of the BF

decoding algorithm, the complexity for sorting is also reduced.



5 Simulation Results
In this section, we evaluate the effectiveness of the pro-

posed decoding algorithm by computer simulations.

5.1 Conditions for Simulation
For binary (63,30,13) BCH code and binary (104,52,20)

quadratic residue (QR) code, we perform MLD by the BF

decoding algorithm (we denote with “BF” in tables) and the

proposed decoding algorithm (we denote with “Proposed”

in tables). At each signal to noise ratio (SNR) Eb/S0 [dB],

both decoding algorithms are carried out 10000 times. In

tables, we use the following notations:

N(r) : the number of generating test error patterns in

decoding of r
M(r) : the maximum list size in decoding of r
ave : the average value among 10000 decoding

max : the maximum value among 10000 decoding

We use the function f as the evaluation function in both
decoding algorithm. Since the function f does not satisfy
(C2), S’4) instead of S4) is used in the BF decoding al-
gorithm. We assume that the weight profiles WH(C) of
these two codes are unknown and we use their supersets
W ′

H(C) = {0, dH, dH+1, · · · , n}. Furthermore, we set the ref-
erence codeword as c̃ref = c̃best for the calculation of (5).
Each time a new estimated codeword c̃best is obtained, the
reference codeword is updated7.

5.2 Results and Discussion
By Table 1, the maximum list size max M(r) in the pro-

posed decoding algorithm is less than 1/3 of that in the BF
decoding algorithm in each SNR. Furthermore, the average
value of the maximum list size ave M(r) in the proposed
decoding algorithm is less than 1/4 of that in the BF de-
coding algorithm. These results show that the effectiveness
of the proposed decoding algorithm. By Table 2, the values
max M(r) and ave M(r) in the proposed decoding algorithm
are less than 1/4 and 1/5 of ones in the BF decoding algo-
rithm, respectively. Theses results indicate the proposed
method also works well for a longer code.

The number of generating test error patterns N(r) is one
of indices to evaluate time complexity in heuristic search
MLD algorithms [2, 4]. By Table 1 and 2, N(r) in the
proposed decoding algorithm are less than 2/5 of N(r) in
the BF decoding algorithm even at low SNRs. These results
indicate the proposed method reduces the time complexity of
the BF decoding algorithm as well as the space complexity.

6 Conclusion and Future Works
In this paper, we propose a method for reducing the

space complexity of the Battail-Fang decoding algorithm
that is a priority-first heuristic search MLD. The proposed
method is applicable to search methods with more effective
evaluation functions. The decoding algorithm employing the
proposed method are guaranteed to perform MLD since the
set of generated candidate codewords there is identical to
that in the BF decoding algorithm. The proposed decod-
ing algorithm reduces not only the space complexity but the
time one in the BF decoding algorithm. The proposed de-
coding algorithm can be straightforwardly modified to sup-
optimal soft-decision decoding by limiting a set of candidate

7 For a justifiable comparison, we assign the same value of the

evaluation function to the same test error pattern in both de-

coding algorithm even when c̃ref is updated. i.e., the number

of generating candidate codewords is the same in both decoding

algorithm.

Table 1: The results of decoding for (63,30,13) BCH code

Eb/N0 [dB] BF Proposed

5.0 ave N(r) 33.7 2.42

M(r) 1.20 0.145

max M(r) 2073 411

4.0 ave N(r) 94.6 20.7

M(r) 11.6 1.86

max M(r) 9586 2406

3.0 ave N(r) 593 205

M(r) 99.9 20.7

max M(r) 15191 4435

2.0 ave N(r) 2960 1190

M(r) 553 130

max M(r) 70519 20552

Table 2: The results of decoding for (104, 52, 20) QR code

Eb/N0 [dB] BF Proposed

6.0 ave N(r) 1.53 0.173

M(r) 0.248 0.0228

max M(r) 187 18

5.0 ave N(r) 33.3 4.91

M(r) 3.66 0.358

max M(r) 5215 789

4.0 ave N(r) 1210 349

M(r) 170 29.5

max M(r) 463354 98746

3.0 ave N(r) 41000 14700

M(r) 6860 1410

max M(r) 11452892 2673788

codewords, and the same effectiveness can be anticipated as
presented in this paper.

As future works, we need to develop a method for heuris-
tic search MLD algorithm with powerful evaluation functions
such as in [2]. The analytical guarantees of the reduction ra-
tio of the complexity in the proposed method to that in the
BF decoding algorithm are also needed.
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linéaires en blocs,” Annales des télé-communications, vol.41,
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