
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004
2493

PAPER Special Section on Information Theory and Its Applications

An Improved Method of Reliability-Based Maximum Likelihood
Decoding Algorithms Using an Order Relation among Binary
Vectors∗

Hideki YAGI†a), Student Member, Manabu KOBAYASHI††, Toshiyasu MATSUSHIMA†, Members,
and Shigeichi HIRASAWA†, Fellow

SUMMARY Reliability-based maximum likelihood decoding (MLD)
algorithms of linear block codes have been widely studied. These algo-
rithms efficiently search the most likely codeword using the generator ma-
trix whose most reliable and linearly independent k (dimension of the code)
columns form the identity matrix. In this paper, conditions for omitting
unnecessary metrics computation of candidate codewords are derived in
reliability-based MLD algorithms. The proposed conditions utilize an or-
der relation of binary vectors. A simple method for testing if the proposed
conditions are satisfied is devised. The method for testing proposed con-
ditions requires no real number operations and, consequently, the MLD
algorithm employing this method reduces the number of real number oper-
ations, compared to known reliability-based MLD algorithms.
key words: maximum likelihood decoding, soft decision decoding, relia-
bility measure, linear block codes, order relation

1. Introduction

Maximum likelihood decoding (MLD) minimizes the block
error probability of decoding when each codeword is
equally likely to be transmitted. Since the complexity for
performing MLD of block codes becomes impractically
large as the code length becomes larger, many researchers
have been devoted to reduce the complexity of MLD algo-
rithms.

There are, in general, two types of efficient MLD al-
gorithms. The first type is trellis-based MLD algorithms
such as the Viterbi algorithm [11] or the recursive MLD al-
gorithm [5]. Trellis-based MLD algorithms are “breadth-
first” search algorithm [7] which mainly reduces the max-
imum number of computations. The latter type of efficient
MLD algorithms is reliability-based MLD algorithms which
iteratively generate candidate codewords. Reliability-based
MLD algorithms are “depth-first” search algorithm which
reduces the average number of computations and they are
known to be efficient at moderate or high signal to noise
ratio (SNR). One of well-known reliability-based MLD al-

Manuscript received January 19, 2004.
Manuscript revised June 3, 2004.
Final manuscript received June 28, 2004.
†The authors are with the Department of Industrial and Man-

agement Systems Engineering, School of Science and Engineering,
Waseda University, Tokyo, 169-8555 Japan.
††The author is with the Department of Information Science,

School of Engineering, Shonan Institute of Technology, Kana-
gawa, 251-8511 Japan.

a) E-mail: yagi@hirasa.mgmt.waseda.ac.jp
∗The content of this work is partially based on [18].

gorithms uses the bounded distance decoder (BDD) [1], [8],
[10], [16] to generate candidate codewords. Objects of MLD
algorithms using the BDD are codes with algebraic struc-
ture such as the BCH codes or the Goppa codes. Another
reliability-based MLD algorithm uses the permuted gener-
ator matrix (PGM) of the code [6], [7], [12], [14], [17] to
generate candidate codewords (Sub-optimum versions are
found in [2]–[4], [13], [15]). MLD algorithms using the
PGM are applicable to any binary linear block codes [15].
In this paper, we will focus on the reliability-based MLD al-
gorithms using the PGM and we will call them, simply, the
reliability-based MLD algorithms.

In the reliability-based MLD algorithms, test error pat-
terns are iteratively generated to construct candidate code-
words. Each time a new candidate codeword is constructed,
metrics computation of it is carried out. In these algorithms,
implicitly or explicitly, a sufficient condition for the opti-
mality is tested. A sufficient condition for eliminating un-
necessary test error patterns is also applied before they are
encoded with the PGM. As a result, the reliability-based
MLD algorithms require the relatively small number of can-
didate codewords and of their metrics computations. At low
to moderate SNRs and for long codes, however, the number
of candidate codewords for which the algorithm searches is
still large. Therefore, the number of real number additions,
subtractions and comparisons (hereafter, they will be called
real number operations) is impractically large as the number
of computing metrics of candidate codewords increases. We
note that the total number of real number operations is one
of the typical measures to evaluate the efficiency of MLD
algorithms [4], [7].

In order to reduce the complexity of the reliability-
based decoding algorithm where a large number of itera-
tions (one iteration step consists of constructing candidate
codewords and computing their metrics) are processed, we
can consider the following two approaches: (1) reducing
the number of iterations and (2) reducing the complexity
for each iteration step. In this paper, we will concentrate
ourselves on the latter approach. First, we define an or-
der relation among binary vectors. Then we derive a suf-
ficient condition for omitting unnecessary metrics compu-
tations of candidate codewords by using the defined order
relation. A simple method for testing if the proposed con-
ditions are satisfied is devised so that the test of proposed

2494
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

conditions is implemented with increments of an integer or
shift operations. In accordance with more likely codewords
obtained, an adaptive procedure of the proposed condition,
in which the codeword referenced by it is adaptively altered,
is considered to make the proposed condition more effective.
Testing the proposed conditions requires no real number op-
erations and, as a result, the total number of real number
operations for MLD is reduced. Finally, we show the ef-
fectiveness of the proposed conditions while the decoding
algorithm employing the proposed conditions has no degra-
dation of the error performance.

This paper is organized as follows. In Sect. 2, the gen-
eral framework of the reliability-based MLD algorithm is
briefly reviewed as a preliminary. In Sect. 3, a sufficient
condition for omitting unnecessary metrics computation of
candidate codewords is derived. Then, an adaptive proce-
dure for implementing the proposed method is presented.
Some simulation results are shown in Sect. 4 to demonstrate
the effectiveness of the proposed conditions and concluding
remarks are stated in Sect. 5

2. The Reliability-Based MLD Algorithm

2.1 Preliminary

For integers j1 and j2 such that j1 ≤ j2, let [j1, j2] denote
the set of positive integers from j1 to j2. For binary vector
x = (x1, x2, . . . , xα) of finite length α, let wH(x) and supp(x)
be, respectively, the Hamming weight of x and the support
of x defined as supp(x) = { j | x j = 1}. For a set X, let |X| be
the cardinality of X.

Let Vn denote a set of all binary n-dimensional vec-
tors. Let C ⊆ Vn be a binary linear (n, k, d) block code
with length n, dimension k and minimum distance d. Let
G be a generator matrix of C. Assume that each codeword
c = (c1, c2, . . . , cn) ∈ C has equal probability to be transmit-
ted over the Additive White Gaussian Noise (AWGN) chan-
nel with the signal to noise ratio (SNR) Eb/N0 [dB]. The de-
tector projects the received sequence r = (r1, r2, . . . , rn) ∈
Rn into a sequence θ = (θ1, θ2, . . . , θn) ∈ Rn such that
θ j = ln P(r j |c j=0)

P(r j |c j=1) , j ∈ [1, n], and delivers θ into the decoder.
Let z = (z1, z2, . . . , zn) ∈ Vn be the hard decision received
sequence of θ such that

z j =

{
0, if θ j ≥ 0;
1, otherwise.

(1)

The decoder estimates a transmitted codeword from both θ
and z. For j ∈ [1, n], an error probability of the symbol
z j, P(z j � c j|r j), is smaller as the value |θ j| becomes larger.
Therefore, we call |θ j| reliability measure of j-th symbol.

For any x = (x1, x2, . . . , xn) ∈ Vn, let L(x) be the relia-
bility loss with respect to z defined as

L(x) =
n∑

j=1

(x j ⊕ z j)|θ j|, (2)

where ⊕ represents the exclusive OR operation. For x ∈ Vn,

L(x) is also known as correlation discrepancy [9], [10], [15].
For a subspace X ofVn, let L[X] be defined as

L[X] = min
x∈X L(x). (3)

Then L(cML) = L[C] if and only if cML ∈ C is the most
likely (ML) codeword [9], [10], [12]. i.e., a codeword which
has the smallest reliability loss is the closest codeword from
θ.

2.2 General Framework of the Reliability-Based MLD
Algorithm

After receiving θ, the decoder reorders positions of θ in the
non-increasing order of reliability measure. We denote the
resultant sequence with θ = λ(θ) where λ is the permutation
function from θ to θ. i.e., |θ j1 | ≥ |θ j2 |, 1 ≤ j1 < j2 ≤ n. Let
G′ be the column-permuted generator matrix given by the
same ordering of θ.

For a location set X ⊆ [1, n], let G′X be the k×|X|matrix
which consists of columns of G′ over X. Define

M = arg max
X

{∑
j∈X
|θ j|
∣∣∣∣ |X| = k, rank(G′X) = k

}
. (4)

ThenM is called the k most reliable and linearly indepen-
dent (MRI) positions, i.e., the sum of reliability measures of
the k MRI positions are the largest among that of any other k
linearly independent positions. For G′, the elementary row
operations are carried out so that the k MRI columns form
the identity matrix. The resultant generator matrix is de-
noted with G. Let C be the code given by G which is equiv-
alent to C. Furthermore, let z = λ(z). Let Vn

denote the
set of binary vectors such that Vn

= {x = λ(x) | x ∈ Vn},
i.e., any x ∈ Vn

is permuted in the non-increasing order of
reliability.

Define that u = (u1, u2, . . . , uk) ∈ {0, 1}k consists of the
k MRI symbols of z in non-increasing order of reliability.
The sequence u is regarded as an information sequence and
the decoder constructs the initial codeword c0 by c0 = uG.
Remark that c0 is the ML codeword if c0 = z [10], [12].
If L(c0) > 0, the decoder iteratively constructs candidate
codewords by G and searches the ML codeword which min-
imizes Eq. (2).

Definition 1: For 0 ≤ i ≤ 2k, k-dimensional vector ti ∈
{0, 1}k is called i-th test error pattern. A codeword wi =

(wi,1, wi,2, . . . , wi,n) = t iG is called a test error codeword
which gives a candidate codeword ci = c0 ⊕wi. A candidate
codeword ci (or a test error codeword wi) is said to be better
than ci′ (or wi′), if and only if L(ci) < L(ci′). For a subset C′
of C, a candidate codeword ci and a test error codeword wi

are said to be the best in C′ if and only if L(ci) = L[C′].
Let t0 = 0k where 0k is k-dimensional all zero vector.

Then t0 can be regarded as the test error pattern correspond-
ing to the initial codeword c0 since c0 = c0 ⊕ t0G = c0 ⊕ 0n.
For given G and c0, it is obvious that there is one to one cor-
respondence between ti and ci. Then the order of searching

YAGI et al.: AN IMPROVED METHOD OF RELIABILITY-BASED MLD ALGORITHMS USING AN ORDER RELATION
2495

candidate codewords depends on that of generating test er-
ror patterns. Efficient orders of generating test error patterns
have been devised [6], [7], [14].

Let Cs be a set of codewords which includes all candi-
date codewords ci = c0⊕wi such that 0 ≤ i < s at a decoding
stage of generating t s, i.e.,

Cs =
{
ci = c0 ⊕ wi

∣∣∣wi = tiG, 0 ≤ i < s
}
. (5)

For a test error pattern t i, let F(t i) express arbitrary
evaluation function of ti satisfying

0 ≤ F(t i) ≤ L(ci), (6)

where ci = c0 ⊕ tiG. Several evaluation functions have been
proposed [2], [6], [7], [12].

At a decoding stage of generating ti, we need not to
encode ti if

L[Ci] ≤ F(t i), (7)

since ci cannot be better than the best candidate codeword
obtained so far. i.e., if Eq. (7) holds, t i cannot give the best
candidate codeword.

For 0 ≤ ∀i ≤ 2k, let ei = (ei,1, ei,2, . . . , ei,n) be such that
ei = z ⊕ ci. For wi ∈ C, let Λ(wi) be defined as

Λ(wi) =
∑

j∈supp(wi)

(1 − 2e0, j)|θ j|. (8)

Then, for ci(= c0 ⊕ wi), we can compute L(ci) by

L(ci) = L(c0) + Λ(wi), (9)

since from z ⊕ ci = e0 ⊕ wi,

L(ci) =
n∑

j=1

(e0, j ⊕ wi, j)|θ j|

=

n∑
j=1

e0, j|θ j| +
n∑

j=1

(1 − 2e0, j)wi, j|θ j|

= L(c0) +
∑

j∈supp(wi)

(1 − 2e0, j)|θ j|. (10)

By Eq. (9), for a fixed c0, searching ci which minimizes
L(ci) is equivalent to searching wi which minimizes Λ(wi).

We describe a general version of the reliability-based
MLD algorithm below. For an integer α, let α++ denote the
increment operation of α.

[The reliability-based MLD Algorithm]

1) Generate c0 := uG, and set L := L(c0), w∗ := 0n, Λ := 0
and i := 1.

2) Generate ti and compute F(ti). If L ≤ F(ti), then go to
4).

3) Generate wi := t iG and compute Λ(wi). If Λ(wi) < Λ,
then Λ := Λ(wi), L := L(c0) + Λ and w∗ := wi.

4) Set i++. If i ≤ 2k and a certain terminating criterion does
not hold, then go to 2), otherwise output cML := c0 ⊕ w∗
and stop. �

As for a terminating criterion of the decoding algorithm at
step 4), several criteria have been proposed [2], [3], [6], [7],
[12].

We here state the complexity of the reliability-based
decoding algorithm. The time complexity of permuting θ in
the non-increasing order is O(n log n) and of constructing G
is O(n× κ2) where κ = min{k, n− k} [2], [6], [7]. These steps
are carried out only once in a decoding procedure. Contrary
to the above steps, generating ti and constructing wi = t iG
are carried out iteratively, where each encoding requires bi-
nary operations of O(kn) by conventional encoding method
[2], [12]. For each test error codeword constructed, com-
puting Eq. (8) costs real number operations of O(n). There-
fore, both encoding test error patterns and the real number
operations of step 3) dominate mainly the whole decoding
complexity [4], [7], [12]. As for the space complexity, stor-
ing G requires O(kn). In some MLD algorithms [7], [12],
[14], the test error patterns are stored in a list before en-
coded by G. In these algorithms, denoting the maximum list
size for decoding r by N(r), the space complexity is O(γ)
where γ = max{kn,N(r)}.

3. Proposed Methods Using an Order Relation

3.1 Conditions for Omitting Unnecessary Metrics Compu-
tations

We will develop the method for reducing the complexity
of the reliability-based decoding algorithms by exploiting
the following two properties of the decoding algorithm:
(1) Every n-dimensional sequence is permuted in the non-
increasing order of reliability measure, (2) at least one code-
word (the initial codeword) is obtained before generating
each test error codeword.

We consider the case in which ti does not satisfy Eq. (7)
and is encoded to wi in a decoding procedure. If we find
out wi cannot give the best codeword, then the computation
of Eq. (8) (which is the metrics computation of wi) can be
omitted. Roughly speaking, we measure a distance† (de-
fined overVn

like the Hamming distance) between ci and θ
and that between c0 and θ. If ci is obviously farther from θ
than c0, we eliminate ci from consideration without comput-
ing its metrics. We will derive a condition that guarantees a
test error codeword wi which cannot give the ML codeword.

We define the following order relations:

Definition 2: (The Order Relation for Supports) For two
location sets X = { j1, j2, . . . , jm} and X′ = { j′1, j′2, . . . , j′m′ }
such that j1 < j2 < · · · < jm and j′1 < j′2 < · · · < j′m′ , we
write “X′ <S X” if m′ ≤ m and jh ≤ j′h,∀h ∈ [1,m′].

Definition 3: (The Order Relation for Binary Vectors)
For two vectors x and x′, we write “x′ <V x” if and only if
supp(x′) <S supp(x).

For two vectors x = (x1, x2, . . . , xn) ∈ Vn
and x′ =

†It will be defined in Definition 2 and 3, although it does not
satisfy an axiom of the distance measure.

2496
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

(x′1, x
′
2, . . . , x

′
n) ∈ Vn

, define two location sets as

D0(x, x′) = { j | x j = 1 and x′j = 0}, (11)

D1(x, x′) = { j | x j = 1 and x′j = 1}. (12)

Theorem 1: For a test error codeword wi, assume that
there is an order relation such that

D1(wi, e0) <S D0(wi, e0). (13)

Then ci(= c0 ⊕ wi) cannot be better than c0.

Proof: Assume that D0(wi, e0) = { j1, j2, . . . , jm} and
D1(wi, e0) = { j′1, j′2, . . . , j′m′ } such that j1 < j2 < · · · < jm
and j′1 < j′2 < · · · < j′m′ . For each element of Dα(wi, e0),
α ∈ {0, 1} satisfies

|θ j1 | ≥ |θ j2 | ≥ · · · ≥ |θ jm |, (14)

|θ j′1 | ≥ |θ j′2 | ≥ · · · ≥ |θ j′
m′ |. (15)

By the assumption of Eq. (13), m′ ≤ m and

|θ jh | ≥ |θ j′h |, for h ∈ [1,m′]. (16)

Equation (8) is now

Λ(wi) = 6
n∑

j=1

(1 − 2e0, j)wi, j|θ j|

=
∑

j | e0, j=0

wi, j|θ j| −
∑

j | e0, j=1

wi, j|θ j|

=
∑

j∈D0(wi,e0)

|θ j| −
∑

j∈D1(wi ,e0)

|θ j|. (17)

Therefore Λ(wi) ≥ 0 by Eq. (16). Hence L(ci) = L(c0) +
Λ(wi) ≥ L(c0) and ci cannot be better than c0. �

If the order relation of Eq. (13) is satisfied, ci given by
wi is farther from θ than c0. i.e., ci cannot be the ML code-
word. Equation (13) can be used for judging if the metrics of
a candidate codeword need not to be computed. Hereafter,
we call this order relation of Eq. (13) Omitting Criterion A.

We now present a method for testing if an order relation

D1(x, x′) <S D0(x, x′), (18)

holds for x = (x1, x2, . . . , xn) ∈ Vn
and x′ = (x′1, x

′
2,

. . . , x′n) ∈ Vn
. For a = (a1, a2, . . . , an) ∈ {0, 1}n, let a >>

and a<< be the right and the left shift operation by one bit,
respectively. The algorithm can be performed by increments
of an integer and shift operations of a binary array.

[Procedure OT (x, x′)]

1) Set a := (0, 1, 0, . . . , 0) and τ := 1.
2) If xτ = 1 and x′τ = 0, then a >>. If xτ = 1 and x′τ = 1,

then a<<.
3) If a1 = 1, then OT (x, x′) := 1 and stop. If τ = n, then

OT (x, x′) := 0 and stop. Otherwise, set τ++ and go to
2). �

Note that for an integer α, α++ denotes the increment
of α. In the above algorithm, we denote a returned value
with OT (x, x′) ∈ {0, 1}. If Eq. (18) is satisfied, the algorithm
returns OT (x, x′) = 0 (the validity of the algorithm will be
given below). Otherwise, it returns OT (x, x′) = 1. Remark
that OT (x, x′) denotes either testing Eq. (18) or a returned
value of the test.

At step 2) in the above algorithm, τ such that xτ = 1
and x′τ = 0 is an element of D0(x, x′). Similarly, τ such
that xτ = 1 and x′τ = 1 is an element of D1(x, x′). i.e., the
procedure of step 2) means:

(1) if we find τ ∈ D0(x, x′), then we set a>>,
(2) if we find τ ∈ D1(x, x′), then we set a<<.

Remark that we can realize shift operations of a>> and a<<
much easier than ordinary shift operations of binary array of
size n since wH(a) = 1. It is enough that the element one is
moved by one bit and this shift can be accomplished by two
exclusive OR operations. We also remark that we can de-
scribe Procedure OT (x, x′) using a variable ρ, which keeps
the position of the element 1 in a, instead of using the vec-
tor a. In that case, we initially set ρ = 2. The left and right
shift operation in Procedure OT (x, x′) can be expressed by
the decrement and increment of ρ, respectively.

We will show the validity of the above algorithm.

Theorem 2: For x, x′ ∈ Vn
, the returned value is

OT (x, x′) = 0 if and only if Eq. (18) holds.

Proof: First, we will prove if part. We assume
that Eq. (18) holds. Let D0(x, x′) = { j1, j2, . . . , jm} and
D1(x, x′) = { j′1, j′2, . . . , j′m′ } such that j1 < j2 < · · · < jm and
j′1 < j′2 < · · · < j′m′ . The algorithm searches jh ∈ D0(x, x′)
or j′h ∈ D1(x, x′) from left position to right one. For any h ∈
[1,m′], before we encounter τ = j′h ∈ D1(x, x′), we have al-
ready found jh ∈ D0(x, x′) since jh < j′h, ∀h ∈ [1,m′], from
Eq. (18). Therefore, after we encounter τ = j′h ∈ D1(x, x′)
for h ∈ [1,m′], j such that aj = 1 is necessarily greater than
one, i.e., j > 1. The condition a1 = 1 does not hold for all
positions τ,∀τ ∈ [1, n]. Since τ is incremented up to n, the
returned value is OT (x, x′) = 0.

Next, we will prove only if part. We assume
OT (x, x′) = 0. We here assume there exist a certain h∗ such
that j′h∗ < jh∗ and we will prove the theorem by contradic-
tion. If h∗ = 1, then we set a << and a1 = 1 holds when
encountering τ = j′1 ∈ D1(x, x′) at step 2). Then h∗ should
be greater than one. If h∗ > 1, then jh∗−1 < j′h∗−1 < j′h∗ < jh∗ .
When we encounter τ = j′h∗−1 ∈ D1(x, x′) at step 2), we
set a << and a2 = 1 holds since we have already found
exactly h∗ − 1 elements of each D0(x, x′) and D1(x, x′).
Therefore, when encountering τ = j′h∗ ∈ D1(x, x′) at step
2), we set a << and a1 = 1 holds. At step 3), the algo-
rithm returns OT (x, x′) = 1. This contradicts the assump-
tion, OT (x, x′) = 0. Hence jh < j′h must be satisfied for
∀h ∈ [1,m′] and Eq. (18) holds. �

Testing Omitting Criterion A is denoted with
OT (wi, e0).

YAGI et al.: AN IMPROVED METHOD OF RELIABILITY-BASED MLD ALGORITHMS USING AN ORDER RELATION
2497

Corollary 1: For wi and e0, the returned value is
OT (wi, e0) = 0 if and only if Eq. (13) holds. When
OT (wi, e0) = 0, ci(= c0 ⊕ wi) cannot be better than c0.

By Corollary 1, if OT (wi, e0) = 0 for wi, we can omit
the computation of Eq. (17) for wi. It is obvious that the
time complexity for performing OT (wi, e0) is increments of
an integer and shift operations of O(n). Note that increments
of an integer are also necessary for encoding and comput-
ing metrics if we realize them serially by software. Since
the computation of Eq. (17) costs real number operations
of O(n), the time complexity of testing Omitting Criterion
A is fairly small. As for the space complexity, we need to
store e0 and this requires a binary array of size O(n). In the
reliability-based MLD algorithm, this number is negligible
since storing only G requires a binary array of size O(kn).

Example 1: Let wi = (00011011) and e0 = (00001010).
Then D0(wi, e0) = {4, 8} and D1(wi, e0) = {5, 7}. First, we
find τ = 4 ∈ D0(wi, e0), then we set a2 := 0 and a3 := 1 by
a>>. Next, we find τ = 5 ∈ D1(wi, e0), then we set a2 := 1
and a3 := 0 by a<<. When we find τ = 7 ∈ D1(wi, e0), we
set a1 := 1 and a2 := 0 by a<<. Since a1 = 1, OT (wi, e0) =
1 is returned.

Example 2: Let wi = (00101110) and e0 = (00001010).
Then D0(wi, e0) = { j1 = 3, j2 = 6} and D1(wi, e0) = { j′1 =
5, j′2 = 7}. Therefore, from j1 < j′1 and j2 < j′2, Eq. (13)
holds. When we increment τ up to n = 8, the algorithm
returns OT (wi, e0) = 0.

We describe the reliability-based MLD algorithm em-
ploying the test of Omitting Criterion A. We will call this
decoding algorithm the proposed decoding algorithm A.

[The Proposed Decoding Algorithm A]

1) Generate c0 := uG, and set L := L(c0), e0 := z ⊕ c0,
w∗ := 0n, Λ := 0 and i := 1.

2) Generate ti and compute F(ti). If L ≤ F(ti), then go to
4).

3) a) Generate wi := tiG. If OT (wi, e0) = 0, then go to 4).
b) Compute Λ(wi). If Λ(wi) < Λ, then Λ := Λ(wi), L :=

L(c0) + Λ and w∗ := wi.

4) Set i++. If i ≤ 2k and a certain terminating criterion does
not hold, then go to 2), otherwise output cML := c0 ⊕ w∗
and stop. �

In the above algorithm, step 1) and 3) is modified to the
original reliability-based decoding algorithm. At step 3)a),
if OT (wi) = 0, real number operations at step 3)b), which
include the computation of Eq. (17) and one addition and
comparison, are omitted.

3.2 Adaptive Procedure of the Proposed Conditions

Theorem 1 implies that Omitting Criterion A compares ci

with c0 and judges if ci is farther from θ than c0. In a de-
coding procedure, let c∗ denote the best candidate codeword

obtained so far such that c∗ = c0⊕w∗. At a decoding stage of
constructing wi, the best candidate codeword c∗ is not neces-
sarily equal to c0 and such c∗ is closer to θ than c0. If we can
compare ci with c∗ (not with c0) and we test whether ci is
farther from θ than c∗, a sufficient condition for omitting un-
necessary metrics computation may be more effective. We
will consider an adaptive procedure in which c∗ referenced
by the proposed condition is adaptively altered.

At a decoding stage of constructing wi, let e∗ =
(e∗1, e

∗
2, . . . , e

∗
n) be such that e∗ = z ⊕ c∗. Furthermore, let

ui = w
∗ ⊕ wi.

Lemma 1: Using c∗ and ui = w
∗ ⊕wi, L(ci) is expressed as

follows:

L(ci) = L(c∗) +
∑

j∈supp(ui)

(1 − 2e∗j)|θ j|. (19)

Equation (19) shows the relation between L(c∗) and L(ci).

Proof: Since c0 = c∗ ⊕ w∗ and e∗ = z ⊕ c∗, the left hand
side (l.h.s.) of Eq. (19) expands in the following way:

L(ci) = L(c0 ⊕ wi) = L(c∗ ⊕ w∗ ⊕ wi)

=

n∑
j=1

(e∗j ⊕ w∗j ⊕ wi, j)|θ j|

=

n∑
j=1

e∗j |θ j| +
n∑

j=1

(1 − 2e∗j)(w
∗
j ⊕ wi, j)|θ j|

= L(c∗) +
∑

j |w∗j⊕wi, j=1

(1 − 2e∗j)|θ j|. (20)

Hence we have Eq. (19). �

Theorem 3: For a test error codeword wi, assume that
there is an order relation such that

D1(ui, e
∗) <S D0(ui, e

∗). (21)

Then ci(= c0 ⊕ wi) cannot be better than c∗.

Proof: We can prove the theorem in a similar way of
proving Theorem 1 by using Lemma 1. �

Theorem 3 implies that ci, given by wi, is farther from θ
than c∗ if Eq. (21) holds for wi. Then wi cannot give the ML
codeword. Therefore we need not compute metrics of wi

which satisfies Eq. (21).
In general, for e∗ � e0, wH(e∗) tends to be smaller than

wH(e0) [3]. This implies that |D1(ui, e
∗)| tends to be smaller

than |D1(wi, e0)|. Consequently, Eq. (21) can be a more ef-
fective condition than Omitting Criterion A since Eq. (13) or
Eq. (21) is satisfied more often, as the cardinality of its l.h.s.
is smaller. We will call the order relation of Eq. (21) Omit-
ting Criterion B. For wi and w∗, testing Omitting Criterion
B is denoted with OT (ui, e

∗).
We describe the reliability-based MLD algorithm em-

ploying Omitting Criterion B in which step 1) and 3) is mod-
ified to the original MLD algorithm. We will call this decod-
ing algorithm the proposed decoding algorithm B.

2498
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

[The Proposed Decoding Algorithm B]

1) Generate c0 := uG, and set L := L(c0), e0 := z ⊕ c0,
w∗ := 0n, e∗ := 0n, Λ := 0 and i := 1.

2) Generate ti and compute F(ti). If L ≤ F(ti), then go to
4).

3) a) Generate wi := t iG and set ui := w∗ ⊕ wi. If
OT (ui, e

∗) = 0, then go to 4).
b) Compute Λ(wi). If Λ(wi) < Λ, then Λ := Λ(wi), L :=

L(c0) + Λ, w∗ := wi and e∗ := e0 ⊕ w∗.
4) Set i++. If i ≤ 2k and a certain terminating criterion does

not hold, then go to 2), otherwise output cML := c0 ⊕ w∗
and stop. �

In the proposed decoding algorithm B, we construct ui
each time wi is obtained at step 3)a). For w∗ � 0n, construct-
ing ui costs just n binary operations which is smaller than
the complexity of encoding each test error pattern (ordinar-
ily that costs binary operations of O(kn)). We also update e∗

in order to implement OT (ui, e
∗) each time a new best can-

didate codeword is obtained at step 3)b). Since e∗ = z ⊕ c∗

and e0 = z ⊕ c0, we can obtain e∗ by

e∗ = z ⊕ c0 ⊕ w∗ = e0 ⊕ w∗. (22)

For w∗ � 0n, the computation of the right hand side (r.h.s.)
of Eq. (22) requires just n binary operations. Furthermore,
the space complexity for storing ui and e∗ is two binary ar-
rays of size O(n). We remark again that storing G requires
O(kn) and the increased space complexity is small.

We can also consider the following modification: Ei-
ther Omitting Criterion A and B is selectively tested for wi

in accordance with the order relation between t i and t∗ such
that w∗ = t∗G. Remark that, for wi and w∗, Omitting Crite-
rion B holds only if t∗ <V t i. Therefore, for wi, we adopt
Omitting Criterion A if t∗ ≮V ti, and adopt Omitting Crite-
rion B otherwise†. In this case, testing if t∗ <V t i can be car-
ried out in a similar way of the test OT (x, x′) for x, x′ ∈ Vn

.
The time complexity for testing the order relation of test er-
ror patterns of length k is smaller than the test OT (x, x′) for
x, x′ of length n.

3.3 Performance of the Proposed Decoding Algorithms

In this subsection, we state the performance of the proposed
decoding algorithms.

Theorem 4: The both proposed decoding algorithms A
and B achieve MLD.

Proof: Test error codewords constructed in the both pro-
posed decoding algorithms A and B are the same as that
constructed in the original MLD algorithm. The proposed
decoding algorithms eliminate codewords which cannot be
the ML codeword. For the ML codeword, its metrics is nec-
essarily computed. �

We summarize the additional complexity of the pro-
posed decoding algorithms A and B to the original

reliability-based MLD algorithm. First, we state the addi-
tional complexity of the proposed decoding algorithm A.

(1) Time complexity: For testing OT (wi, e0), at most n − 1
increments of an integer and at most n shift operations are
required.

(2) Space complexity: For storing e0, we allocate a binary
array of size n.

Next, we state the additional complexity of the proposed de-
coding algorithm B.

(1) Time complexity: For testing OT (ui, e
∗), we construct

ui each time wi is constructed. Furthermore, we construct
e∗ each time w∗ is obtained. Constructing ui or e∗ costs
n binary operations. For implementation of OT (ui, e

∗), at
most n − 1 increments of an integer and at most n shift
operations are required.

(2) Space complexity: For storing ui and e0, we allocate
two binary arrays of size n.

Theorem 5: The numbers of real number operations for
both proposed decoding algorithms A and B are smaller than
that for the original reliability-based MLD algorithm.

Proof: The total number of generating candidate code-
words is the same for each decoding algorithm. The pro-
posed decoding algorithm A (B) omits the computation of
Eq. (17) if Omitting Criterion A (B) is satisfied for a test er-
ror codeword. Therefore, in proposed decoding algorithms
A and B, the numbers of computation of Eq. (17) are re-
duced or at most the same as that in the original MLD algo-
rithm. �

4. Simulation Results

4.1 Conditions for Simulations

In this section, we present simulation results for the binary
(63,30,13) BCH code and the binary (127,64,21) BCH code
in order to evaluate effectiveness of the proposed conditions.
We assume each codeword is transmitted over the AWGN
channel with the SNR Eb/N0 [dB]. Although the proposed
conditions can be applicable to any reliability-based decod-
ing algorithms, we adopt the Gazelle and Snyders (GS) de-
coding algorithm [6] which is well-known for its efficiency
with small space complexity.

The GS decoding algorithm [6] employs a simple eval-
uation function of ti defined as

∆(ti) =
k∑

j=1

ti, j|θ̃ j|, (23)

where θ̃ = (θ̃1, θ̃2, . . . , θ̃n) is permuted sequence of θ such
that the leftmost k positions are the k MRI positions in the
non-increasing order of reliability measure. The function

†For x and x′, the order relation x ≮V x′ means that the order
relation x′ <V x never holds.

YAGI et al.: AN IMPROVED METHOD OF RELIABILITY-BASED MLD ALGORITHMS USING AN ORDER RELATION
2499

∆(t i) satisfies Eq. (6) (i.e., ∆(t i) ≤ L(ci)) since

L(ci) = ∆(ti) +
∑

j∈[1,n]\M
(z j ⊕ ci, j)|θ j|. (24)

Another evaluation function of ti is used by MLD al-
gorithms in [2], [6], [7]. The evaluation function f (t i) gives
a tighter lower bound of L(ci) than the function ∆(t i). The
function f (t i) uses the fact that the Hamming distance be-
tween some codeword cseed and any codeword ci � cseed is
no less than d, which is the minimum distance of the code
C. Here, as in [2], [6], we consider the case cseed = c0

†.
We define B(c0) as the set of positions where element of
e0(= z ⊕ c0) is 0. Furthermore, for ti, let A(c0, ti) be the
set of d −wH(e0)−wH(t i) least reliable positions in B(c0)††.
Then, the function f (t i) is defined as

f (t i) = ∆(ti) +
∑

j∈A(c0,ti)

|θ̄ j|, (25)

where ∆(ti) is given by Eq. (23). The second term of r.h.s.
of Eq. (25) is non-negative, so the function f (t i) is a tighter
lower bound of L(ci) than ∆(t i). The function f (t i) is the
same as the heuristic function of the A∗ decoding algorithm
[7], if we set cseed = c0.

The main difference between ∆(·) and f (·) is the sec-
ond term of r.h.s. of Eq. (25). The second term of Eq. (25)
depends only on the Hamming weight of a test error pattern
so it can be computed beforehand for each Hamming weight
1, 2, . . . , d − wH(e0) − 1 and be stored in memory. Further-
more, the second term of Eq. (25) for the larger Hamming
weight than one can be computed during the computation of
the second term for the Hamming weight one.

We consider the two GS decoding algorithms using
(i) the evaluation function ∆(·) (denoted as the algorithm
GS(∆)) and (ii) the evaluation function f (·) (denoted as the
algorithm GS(f)). For each original GS decoding algorithm,
we consider the following two modifications:

(1) [The algorithm A(∆) and A(f)]: In algorithms GS(∆)
and GS(f), respectively, each time a test error codeword
wi is constructed, Omitting Criterion A is tested if ci(=
c0 ⊕ wi) cannot be better than c0.

(2) [The algorithm B(∆) and B(f)]: In algorithms GS(∆)
and GS(f), respectively, each time the best candidate
codeword c∗ is obtained, the codeword referenced by
Omitting Criterion B is updated. After each test error
codeword wi is constructed, Omitting Criterion B is tested
if ci cannot be better than c∗.

Note that the numbers of real number operations for
modified algorithms A(∆) and B(∆) are no more than that
for the algorithm GS(∆) by Theorem 5. As for algorithms
using f (·), the same relation holds.

The results are obtained by decoding 10000 codewords
for each SNR and the average values are shown in tables. In
tables, we show the results of the following simulations.

(1) In order to evaluate the effectiveness of modified algo-
rithms employing Omitting Criterion A or B, we com-
pare the average number of real number operations for

each decoding algorithm†††. For computation of L(c0),
we count wH(e0) − 1 real number operations. Similarly,
for each computation of Λ(wi), we count wH(wi) − 1 real
number operations. The results are shown in Tables 1 and
2.

(2) In order to evaluate the effectiveness of Omitting Crite-
rion A and B, we compare the average number of compu-
tations of Eq. (17) in six decoding algorithms. The results
are shown in Tables 3 and 4.

4.2 Results about the Number of Real Number Operations

First we describe results at low to medium SNRs. By Ta-
bles 1 and 2, we can see that the numbers of real number
operations for algorithms GS(∆) and GS(f) are almost the
same. These results imply that there is almost no difference
between the effects of two evaluation functions. The num-
ber of real number operations for the algorithm GS(∆) is the
largest and that for the algorithm GS(f) is the second largest.
The number of real number operations for the algorithm
A(∆) is the third largest (and the largest among modified
algorithms A(∆), B(∆), A(f) and B(f)). Even the algorithm
A(∆) reduces the number of real number operations less than
1/3 that for the (63,30,13) and the (127,64,21) codes, com-
pared with the algorithm GS(∆). The algorithm B(∆) re-
quires less number of real number operations than that of
the algorithm A(∆) for the (63,30,13) and the (127,64,21)
codes. The similar results are obtained for algorithms with
the function f (·) for both codes.

Next we describe results at high SNRs. Contrary to the
case at low to medium SNRs, the algorithm A(f) (or B(f))
requires more number of real number operations than that of
the algorithm A(∆) (or B(∆)). The reason is that the number
of candidate codewords are relatively small and computa-
tions of the second term of Eq. (25) dominate for the whole
decoding complexity of A(f) and B(f). Note that the com-
plexity for computing the second term of Eq. (25) is inde-
pendent of the number of candidate codewords. The num-
bers of real number operations for the algorithm B(∆) were
the least among six algorithms and the values for B(∆) were
less than 1/3 that for GS(f), which required less real num-
ber operations between two conventional algorithms. These
results indicate that we should select the evaluation function
depending on SNRs if we adopt proposed conditions.

4.3 Results about the Number of Metrics Computations

First we describe results at low SNRs. By Tables 3 and 4, the
numbers of metrics computations for algorithms GS(∆) and

†Note that before generating any ti, the initial codeword c0 is
already obtained.
††We defineA(c0, t i) = ∅ if d − wH(e0) − wH(ti) ≤ 0.
†††We do not include the number of real number operations for

permuting from θ to θ because it depends on sorting method. For
the (63,30,13) and the (127,64,21) codes at each SNR, on average
251 and 582 real number operations are required, respectively, by
the quick sort technique.

2500
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

Table 1 The number of real number operations for the (63, 30, 13) BCH code with the function ∆(·)
and f (·).

Eb/N0 original proposed original proposed
[dB] GS(∆) A(∆) B(∆) GS(f) A(f) B(f)

1.00 6.94 · 104 2.44 · 104 2.17 · 104 6.89 · 104 2.43 · 104 2.16 · 104

1.50 3.97 · 104 1.39 · 104 1.21 · 104 3.91 · 104 1.38 · 104 1.20 · 104

2.00 2.04 · 104 6.92 · 103 6.03 · 103 1.98 · 104 6.86 · 103 5.98 · 103

2.50 9.36 · 103 3.08 · 103 2.62 · 103 8.82 · 103 3.03 · 103 2.57 · 103

3.00 3.88 · 103 1.21 · 103 8.93 · 102 3.44 · 103 1.17 · 103 8.61 · 102

3.50 1.43 · 103 4.26 · 102 3.00 · 102 1.12 · 103 4.07 · 102 2.81 · 102

4.00 5.49 · 102 1.42 · 102 9.21 · 101 3.50 · 102 1.34 · 102 8.40 · 101

4.50 2.26 · 102 5.71 · 101 4.02 · 101 1.21 · 102 5.73 · 101 4.04 · 101

5.00 8.39 · 101 2.03 · 101 1.27 · 101 3.81 · 101 2.52 · 101 1.76 · 101

5.50 3.31 · 101 7.63 5.79 1.70 · 101 1.45 · 101 1.27 · 101

Table 2 The number of real number operations for the (127, 64, 21) BCH code with the function ∆(·)
and f (·).

Eb/N0 original proposed original proposed
[dB] GS(∆) A(∆) B(∆) GS(f) A(f) B(f)

2.50 3.16 · 107 1.04 · 107 9.23 · 106 3.15 · 107 1.04 · 107 9.21 · 106

3.00 8.04 · 106 2.38 · 106 1.64 · 106 7.93 · 106 2.37 · 106 1.63 · 106

3.50 8.80 · 105 2.69 · 105 1.55 · 105 8.13 · 105 2.63 · 105 1.49 · 105

4.00 1.10 · 105 3.38 · 104 1.59 · 104 8.40 · 104 3.18 · 104 1.40 · 104

4.50 1.62 · 104 4.03 · 103 1.85 · 103 8.34 · 103 3.52 · 103 1.34 · 103

5.00 2.99 · 103 5.83 · 102 2.89 · 102 9.58 · 102 4.89 · 102 1.95 · 102

5.50 6.86 · 102 8.25 · 101 4.73 · 101 1.23 · 102 7.31 · 101 3.79 · 101

6.00 1.82 · 102 1.93 · 101 1.33 · 101 3.51 · 101 2.93 · 101 2.33 · 101

6.50 4.94 · 101 5.59 4.80 2.02 · 101 1.97 · 101 1.89 · 101

Table 3 The number of computations of Eq. (17) for the (63,30,13) BCH code with the function ∆(·)
and f (·).

Eb/N0 original proposed original proposed
[dB] GS(∆) A(∆) B(∆) GS(f) A(f) B(f)

1.00 2.68 · 103 6.66 · 102 5.39 · 102 2.66 · 103 6.65 · 102 5.38 · 102

1.50 1.55 · 103 3.87 · 102 3.03 · 102 1.52 · 103 3.86 · 102 3.02 · 102

2.00 8.08 · 102 1.95 · 102 1.52 · 102 7.81 · 102 1.95 · 102 1.52 · 102

2.50 3.77 · 102 8.89 · 101 6.60 · 101 3.52 · 102 8.89 · 101 6.60 · 101

3.00 1.60 · 102 3.56 · 101 2.03 · 101 1.40 · 102 3.56 · 101 2.03 · 101

3.50 6.10 · 101 1.32 · 101 6.93 4.64 · 101 1.32 · 101 6.92
4.00 2.39 · 101 4.24 1.76 1.44 · 101 4.24 1.76
4.50 9.91 1.65 8.00 · 10−1 4.64 1.65 7.98 · 10−1

5.00 3.71 5.42 · 10−1 1.57 · 10−1 1.15 5.41 · 10−1 1.57 · 10−1

5.50 1.42 1.36 · 10−1 4.16 · 10−2 2.54 · 10−1 1.36 · 10−1 4.14 · 10−2

Table 4 The number of computations of Eq. (17) for the (127,64,21) BCH code with the function ∆(·)
and f (·).

Eb/N0 original proposed original proposed
[dB] GS(∆) A(∆) B(∆) GS(f) A(f) B(f)

2.50 6.98 · 105 1.61 · 105 1.30 · 105 6.94 · 105 1.61 · 105 1.30 · 105

3.00 1.78 · 105 3.47 · 104 1.55 · 104 1.76 · 105 3.47 · 104 1.55 · 104

3.50 2.05 · 104 4.61 · 103 1.55 · 103 1.89 · 104 4.61 · 103 1.55 · 103

4.00 2.69 · 103 6.52 · 102 1.63 · 102 2.04 · 103 6.52 · 102 1.63 · 102

4.50 4.15 · 102 7.97 · 101 1.87 · 101 2.10 · 102 7.97 · 101 1.87 · 101

5.00 7.92 · 101 1.16 · 101 3.21 2.44 · 101 1.16 · 101 3.21
5.50 1.86 · 101 1.37 3.51 · 10−1 2.73 1.37 3.52 · 10−1

6.00 4.95 2.58 · 10−1 8.10 · 10−2 4.14 · 10−1 2.58 · 10−1 8.10 · 10−2

6.50 1.30 3.16 · 10−2 8.40 · 10−3 4.56 · 10−2 3.16 · 10−2 8.40 · 10−3

GS(f) are almost the same. This relationship holds between
A(∆) and A(f) and between B(∆) and B(f). By Table 3, the

algorithm A(∆) (or A(f)) computes metrics of less than 1/4
test error codewords for the (63,30,13) code compared with

YAGI et al.: AN IMPROVED METHOD OF RELIABILITY-BASED MLD ALGORITHMS USING AN ORDER RELATION
2501

the algorithm GS(∆) (or GS(f)). i.e., Omitting Criterion A
holds for more than 3/4 test error codewords. By Table 4,
the value which Omitting Criterion A holds is also more
than 3/4 for the (127,64,21) code. These results indicate that
Omitting Criterion A works well and c0 is a good candidate
as the initial codeword in the reliability-based decoding al-
gorithms. The values for the algorithm B(∆) (or B(f)) is
less than that for the algorithm A(∆) (or A(f)) at each SNR
for both codes. This implies that Omitting Criterion B is, in
general, more effective than Omitting Criterion A. If we use
Omitting Criterion B, the number of computing Eq. (17) is
less than 1/5 test error codewords for the (63,30,13) and the
(127,64,21) codes.

Next we describe results at medium to high SNRs.
The numbers of computing Eq. (17) for algorithms A(∆),
A(f), B(∆) and B(f) decrease as the SNR increases for both
codes. The difference between GS(∆) and GS(f) becomes
large at high SNRs. Nevertheless, the numbers of com-
puting Eq. (17) in the algorithm A(∆) and A(f) are almost
the same and similar results hold for algorithm B(∆) and
B(f). These results indicate the effects of proposed condi-
tions are independent of evaluation functions. It is notewor-
thy that, at high SNR, the numbers of computing Eq. (17) in
the algorithm B(∆) and B(f) are almost negligible for both
(63,30,13) and (127,64,21) codes.

5. Concluding Remarks

In this paper, we have derived two sufficient conditions
for omitting unnecessary metrics computations of candidate
codewords in the reliability-based MLD algorithms. A sim-
ple method for testing the proposed conditions is presented.
For implementation of this method, we need no real number
operations. The results of computer simulations show the
effectiveness of the proposed conditions for the (63,30,13)
and the (127,64,21) BCH codes. As a result, we can reduce
the number of real number operations which is one of the
typical measures for evaluating the efficiency of MLD al-
gorithms. The proposed conditions are applicable to any
reliability-based MLD algorithms such as one in [6], [7],
[12], [14], [17].

As future improvements, a rest of decoding complexity
such as for encoding test error patterns should be reduced.
A method that quantitatively reduces the number of metrics
computations of candidate codewords is also to be devel-
oped.

Acknowledgement

The authors wish to thank the anonymous reviewers for their
valuable comments. One of the authors, H. Yagi would like
to thank Mr. T. Ishida and Mr. G. Hosoya at Waseda Univer-
sity for their supports.

This work is supported by Japan Society for the Promo-
tion of Science under Grants-in-Aid for Scientific Research
No. 1556-0338 and No. 1576-0281 and Waseda University
Grant for Special Research Project No. 2001A-566.

References

[1] D. Chase, “A new class for decoding block codes with channel mea-
surement information,” IEEE Trans. Inf. Theory, vol.IT-18, no.1,
pp.170–182, Jan. 1972.

[2] M.P.C. Fossorier and S. Lin, “Soft-decision decoding of linear block
codes based on ordered statistics,” IEEE Trans. Inf. Theory, vol.41,
no.5, pp.1379–1396, Sept. 1995.

[3] M.P.C. Fossorier, S. Lin, and J. Snyders, “Reliability-based syn-
drome decoding of linear block codes,” IEEE Trans. Inf. Theory,
vol.44, no.1, pp.388–398, Jan. 1998.

[4] M.P.C. Fossorier and S. Lin, “Reliability-based information set de-
coding of binary linear block codes,” IEICE Trans. Fundamentals,
vol.E82-A, no.10, pp.2034–2042, Oct. 1999.

[5] T. Fujiwara, H. Yamamoto, T. Kasami, and S. Lin, “A trellis-based
recursive maximum likelihood decoding algorithm for binary linear
block codes,” IEEE Trans. Inf. Theory, vol.44, no.2, pp.714–729,
March 1998.

[6] D. Gazelle and J. Snyders, “Reliability-based code-search algorithm
for maximum likelihood decoding of block codes,” IEEE Trans. Inf.
Theory, vol.43, no.1, pp.239–249, Jan. 1997.

[7] Y.S. Han, C.P.R. Hartman, and C.C. Chen, “Efficient priority-first
search maximum-likelihood soft decision decoding of linear block
codes,” IEEE Trans. Inf. Theory, vol.39, no.5, pp.1514–1523, Sept.
1993.

[8] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa, “An ef-
ficient maximum-likelihood-decoding algorithm for linear block
codes with algebraic decoder,” IEEE Trans. Inf. Theory, vol.40,
no.2, pp.320–327, March 1994.

[9] T. Kasami, Y. Tang, T. Koumoto, and T. Fujiwara, “Sufficient condi-
tions for ruling-out useless iteration steps in a class of iterative de-
coding algorithms,” IEICE Trans. Fundamentals, vol.E82-A, no.10,
pp.2061–2073, Oct. 1999.

[10] T. Koumoto, T. Kasami, and S. Lin, “A sufficient condition for rul-
ing out some useless test error patterns in iterative decoding algo-
rithms,” IEICE Trans. Fundamentals, vol.E81-A, no.2, pp.321–326,
Feb. 1998.

[11] A. Lafourcade and A. Vardy, “Optimal sectionalization of a trellis,”
IEEE Trans. Inf. Theory, vol.42, no.3, pp.689–703, May 1996.

[12] T. Okada, M. Kobayashi, and S. Hirasawa, “An efficient heuristic
search method for maximum likelihood decoding of linear block
codes using dual codes,” IEICE Trans. Fundamentals, vol.E85-A,
no.2, pp.485–489, Feb. 2002.

[13] C.C. Shih, C.R. Wulff, C.R.P. Hartmann, and C.K. Mohan, “Effi-
cient heuristic search algorithms for soft-decision decoding of linear
block codes,” IEEE Trans. Inf. Theory, vol.44, no.6, pp.3023–3038,
Nov. 1998.

[14] A. Valembois and M.P.C. Fossorier, “An improved method to com-
pute lists of binary vectors that optimize a given weight function
with application of soft-decision decoding,” IEEE Commun. Lett.,
vol.5, no.11, pp.456–458, Nov. 2001.

[15] A. Valembois and M.P.C. Fossorier, “A comparison between “most-
reliable-basis reprocessing” strategies,” IEICE Trans. Fundamentals,
vol.E85-A, no.7, pp.1727–1741, July 2002.

[16] Y. Wu and D.A. Pados, “An adaptive two-stage algorithm for ML
and sub-ML decoding of binary linear block codes,” IEEE Trans.
Inf. Theory, vol.49, no.1, pp.261–269, Jan. 2003.

[17] H. Yagi, M. Kobayashi, and S. Hirasawa, “Complexity reduction
of the Gazelle and Snyders decoding algorithm for maximum like-
lihood decoding,” IEICE Trans. Fundamentals, vol.E86-A, no.10,
pp.2461–2471, Oct. 2003.

[18] H. Yagi, M. Kobayashi, and S. Hirasawa, “An improved method of
maximum likelihood decoding algorithms using the most reliable
basis based on an order relation among binary vectors,” IEICE Tech-
nical Report, IT2003-6, May 2003.

2502
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.10 OCTOBER 2004

Hideki Yagi was born in Yokohama, Japan,
on Oct. 14, 1975. He received the B.E. degree
and M.E. degree in Industrial and Management
Systems Engineering from Waseda University,
Tokyo, Japan, in 2001 and 2003, respectively.
He is currently a doctorial student in Industrial
and Management Systems Engineering at Grad-
uate School of Waseda University. His research
interests are coding and information theory.

Manabu Kobayashi was born in Yoko-
hama, Japan, on Oct. 30, 1971. He received the
B.E. degree, M.E. degree and Dr.E. degree in
Industrial and Management Systems Engineer-
ing form Waseda University, Tokyo, Japan, in
1994, 1996 and 2000, respectively. From 1998
to 2001, he was a research associate in Indus-
trial and Management Systems Engineering at
Waseda University. He is currently a full-time
lecturer of the Department of Information Sci-
ence at Shonan Institute of Technology, Kana-

gawa, Japan. His research interests are coding and information theory and
data mining. He is a member of the Society of Information Theory and Its
Applications, Information Processing Society of Japan and IEEE.

Toshiyasu Matsushima was born in To-
kyo, Japan, on Nov. 26, 1955. He received the
B.E. degree, M.E. degree and Dr.E. degree in
Industrial and Management Systems Engineer-
ing form Waseda University, Tokyo, Japan, in
1978, 1980 and 1991, respectively. From 1980
to 1986, he was with Nippon Electric Corpo-
ration, Kanagawa, Japan. From 1986 to 1992,
he was a lecturer at Department of Management
Information, Yokohama College of Commerce.
From 1993, he was an associate professor and

since 1996 has been a professor of School of Science and Engineering,
Waseda University, Tokyo, Japan. His research interests are information
theory and its application, statistics and artificial intelligence. He is a mem-
ber of the Society of Information Theory and Its Applications, the Japan
Society for Quality Control, the Japan Industrial Management Association,
the Japan Society for Artificial Intelligence and IEEE.

Shigeichi Hirasawa was born in Kobe,
Japan, on Oct. 2, 1938. He received the B.S. de-
gree in mathematics and the B.E. degree in elec-
trical communication engineering from Waseda
University, Tokyo, Japan, in 1961 and 1963,
respectively, and the Dr.E. degree in electrical
communication engineering from Osaka Uni-
versity, Osaka, Japan, in 1975. From 1963 to
1981, he was with the Mitsubishi Electric Cor-
poration, Hyogo, Japan. Since 1981, he has been
a professor of School of Science and Engineer-

ing, Waseda University, Tokyo, Japan. In 1979, he was a Visiting Scholar
in the Computer Science Department at the University of California, Los
Angels (CSD, UCLA), CA. He was a Visiting Researcher at the Hungarian
Academy of Science, Hungary, in 1985, and at the University of Trieste,
Italy, in 1986. In 2002, he was also a Visiting Faculty at CSD, UCLA.
From 1987 to 1989, he was the Chairman of Technical Group on Infor-
mation Theory of IEICE. He received the 1993 Achievement Award, and
the 1993 Kobayashi-Memorial Achievement Award from IEICE. In 1996,
he was the President of the Society of Information Theory and Its Appli-
cations (Soc. of ITA). His research interests are information theory and its
applications, and information processing systems. He is an IEEE Fellow,
and a member of Soc. of ITA, the Operations Research Society of Japan, the
Information Processing Society of Japan, the Japan Industrial Management
Association, and Informs.

