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Abstract

Tail biting trellis codes and block concatenated codes
are discussed from random coding arguments. An error
exponent and decoding complexity for tail biting ran-
dom trellis codes are shown. Then we propose a block
concatenated code constructed by a tail biting trellis
inner code and derive an error exponent and decoding
complexity for the proposed code. The results obtained
by the proposed code show that we can attain a larger
error exponent at all rates except for low rates with the
same decoding complexity compared with the original
concatenated code.
Keywords–block codes, concatenated codes, error ex-
ponent, tail biting convolutional codes, decoding com-
plexity, asymptotic results

1. Introduction

A coding theorem obtained from random coding ar-
guments mainly discussed in ’70s gives us simple and
elegant results on coding schemes, although it states
only an existence of a code. Random coding arguments
can reveal the essential mechanism with respect to the
code. Since we assume maximum likelihood decoding,
they can make clear the relationship between the prob-
ability of decoding error Pr(ε) and the decoding com-
plexity G(N) at a given rate R, where N is the code
length. It should be noted that the coding theorem can
only suggest the behavior of the code, hence it is not
useful enough to design an actual code.

On the other hand, turbo codes and their turbo de-
coding algorithms have been developed, and low den-
sity parity check codes and their decoding algorithms
have been also redeveloped in ’90s. It has been known
that the turbo codes combined with turbo decoding

have high performance such that they can almost meet
the Shannon limit. It is generally difficult to show,
however, the performance of them such as the proba-
bility of decoding error and the decoding complexity
by simple equations without using the weight distribu-
tion of the component codes. Therefore it is important
to note that we discuss coding schemes from the cod-
ing theorem aspects and lead the results obtained into
practical coding problems.

Concatenated codes [1] have remarkable and im-
portant properties from both theoretical and practi-
cal viewpoints. Recently, a block code constructed by
a tail biting convolutional code as a component code
called parallel concatenated block codes (PCBCs) has
been introduced [2]. PCBCs are evaluated by the turbo
decoding techniques. Code parameters of the PCBCs
that have good performance are tabulated. They are,
however, regarded as just one of product type turbo
codes. While, the present authors have used a termi-
nated trellis code as an inner code of a generalized ver-
sion of the block concatenated code called the code C(J)

[3] to reduce the decoding complexity. Note that the
block code has an advantage in decoding delay within
a constant time.

In this paper, we propose a block concatenated code
with a tail biting random trellis code, which is called
code CT . Exponential error bounds and the decoding
complexity for the codes CT are discussed from ran-
dom coding arguments. It is shown that the codes CT
have larger error exponents compared to the original
block concatenated codes simply called codes C whose
inner codes are composed of ordinary block codes, or
terminated trellis codes at all rates except for low rates
under the same decoding complexity.

First, we derive an error exponent and the decoding
complexity for tail biting random trellis codes. Next,
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they are applied to construct the codes CT , and an error
exponent and the decoding complexity of the codes CT
are derived. Finally, they are also applied to obtain a
generalized version of the concatenated code [3].

Throughout this paper, assuming a discrete mem-
oryless channel with capacity C, we discuss the lower
bound on the reliability function (usually called the
error exponent) and asymptotic decoding complexity
measured by the computational work [4].

2. Preliminaries

Let an (N,K) block code over GF (q) be a code of
length N , number of information symbols K and rate
R, where

R =
K

N
ln q (K ≤ N) [nats/symbol] (1)

From random coding arguments for an ordinary
block code, there exists a block code of length N , and
rate R for which the probability of decoding error Pr(ε)
and the decoding complexity G satisfy:

Pr(ε) ≤ exp[−NE(R)] (0 ≤ R < C) (2)
G ∼ N exp[NR] (3)

where E(·) is (the lower bound on) the block code expo-
nent [6], and the symbol ∼ indicates asymptotic equal-
ity.

While, let a (u, v, b) trellis code over GF (q) be a
code of branch length u, branch constraint length v,
yielding b channel symbols per branch and rate r, where

r =
1
b

ln q [nats/symbol] (4)

Hereafter, we denote v
u by a parameter θ, i.e.,

θ =
v

u
(0 < θ ≤ 1) (5)

We now have three methods for converting a trellis code
into a block code [5]:
(i) Direct truncation method
(ii) Tail termination method
(iii) Tail biting method

Letting

N = ub (6)

for a truncated trellis code of (i) and for a terminated
trellis code of (ii), results derived are shown in Table
1, where e(·) is (the lower bound on) the trellis code
exponent [6] (see Appendix A).

In Table 1, the rate R of the terminated trellis code
is given by [6]:

R =
u− v
u

r = (1− θ)r (7)

Note that the following equation holds between E(R)
and e(r) [6]:

E(R) = max
0<µ≤1

(1− µ)e
(R
µ

)
(8)

which is called the concatenation construction [6].

3. Tail biting trellis codes

The tail biting method of (iii) is introduced as a
powerful converting method for maintaining a larger
error exponent with no loss in rates, although the de-
coding complexity increases. The tail biting method
can be stated as follows [5]:

Suppose an encoder of a trellis code. First, ini-
tialize the encoder by inputting the last v information
(branch) symbols of u information (branch) symbols,
and ignore the output of the encoder. Next, input all u
information symbols into the encoder, and output the
codeword of length N = ub in channel symbols and
rate r = 1

b ln q. As the result, we have a (ub, u) block
code over GF (q) by the tail biting method.

Theorem 1 There exists a block code of length N and
rate r obtained by a tail biting random trellis code with
0 < θ ≤ 1

2 for which the probability of decoding error
Pr(ε) satisfies

Pr(ε) ≤ exp[−Nθe(r)] (0 < θ ≤ 1
2
, 0 ≤ r < C) (9)

while the decoding complexity G of the block code is
given by:

G ∼ N2q2v = N2 exp[2Nθr] (10)

Proof: Let w be a message sequence of (branch) length u,
where all messages are generated with the equal probability.
Rewrite the sequence w by

w = (wu−v,wv) (11)

where wu−v is the former part of w (length u − v), and
wv, the latter part of w (length v). As stated in the tail
biting method, first initialize the encoder by inputting wv.
Next input w into the encoder. Then output the coded
sequence x of length N = ub. Note that tail biting ran-
dom trellis coding requires every channel symbols on ev-
ery branch be chosen independently at random with the
probability p which maximizes E0(ρ,p) on nonpathological
channels [6]. Suppose the qv Viterbi trellis diagrams, each
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Table 1: Error exponent and decoding complexity for block codes
block code error exponent decoding complexity upper bound on Pr(·)

ordinary block code E(R) N exp[NR] G−
E(R)
R

truncated trellis code E(r) [6] N2qv G−
E(r)
θr

terminated trellis code E(R) [6] N2qv G−
1−θ
θ

E(R)
R

tail biting trellis code θe(r) (0 < θ ≤ 1
2
) N2q2v G−

e(r)
2r

(Theorem 1)

of which starts at the state si(i = 1, 2, · · · , qv) depending
on wv, and ends at the same state si. The Viterbi decoder
generates the maximum likelihood path ŵ(i) in the trellis
diagram for starting at si and ending at si. Computing
maxi ŵ(i) = ŵ, the decoder outputs ŵ. The decoding er-
ror occurs when {w 6= ŵ}. Without loss of generality, let
the true pathw start at s1 (and end at s1). The probability
of decoding error Pr(ε1) within a trellis diagram starting s1

(and ending s1) for a (u, v, b) random trellis code is given
by [6]

Pr(ε1) ≤ uK1 exp[−vbE0(ρ)] (0 ≤ ρ ≤ 1)

= exp
˘−Nθ[e(r)− ε]¯ (0 ≤ r < C) (12)

where an error event begins at any time. While the proba-
bility of decoding error Pr(ε2) within trellis diagrams start-
ing at si(i 6= 1, i = 2, 3, · · · , qv) and ending at si is given
by

Pr(ε2) ≤ |C|ρ exp[−ubE0(ρ)]

= exp[−ubE0(ρ) + ρvbr]

= exp
˘−N [E0(ρ)− ρθr]¯

= exp[−NE(θr)] (13)

where note that the number of trellis diagrams |C| which
contain no true path is given by

|C| = qv − 1 <∼ exp[vbr] (14)

From (12) and (13), the probability of over-all decoding
error Pr(ε) is bounded by the union bound:

Pr(ε) ≤ Pr(ε1) + Pr(ε2)

≤ exp[−Nθe(r)] + exp[−NE(θr)] (15)

where ε = ε1 ∪ ε2. If 0 < θ ≤ 1/2, then E(θr) = maxθ(1 −
θ)e(r) ≥ (1− θ)e(r) ≥ θe(r). Thus we have from (15)

Pr(ε) ≤ exp
˘−Nθ[e(r)− o(1)]

¯
(16)

o(1) =
ln 2

N
→ 0 as N →∞

While the maximum likelihood decoder for the tail biting

trellis code requires N2qv comparisons for each trellis dia-

gram and performs them in parallel for qv trellis diagrams,

we then have (10), yielding the proof. 2

The result derived in Theorem 1 is also shown in
Table 1.

Next, we evaluate the probability of decoding error
Pr(ε) by taking into account the decoding complexity
G so that coding methods can be easily compared [6].

Let us assume the code length N and rate R = r are
the same for all conversion methods. Rewriting Pr(ε)
in terms of G, we have for an ordinary block code,
G ∼ N exp[NR] > exp[NR] from (3)

N >∼
1
R

lnG (17)

disregarding a lower order terms than N , since we are
interested in asymptotic behavior. We then have [6]

Pr(ε) <∼ G−
E(R)
R (18)

Since G ∼ N2q2v ≥ exp[2vbr] = exp[2Nθr] holds for
the tail biting trellis code, we then have the following
corollary.

Corollary 1 For the tail biting trellis code, we have

Pr(ε) <∼ G−
e(r)
2r (19)

Proof: See Appendix B. 2

A similar derivation gives the evaluations for trun-
cated trellis code of (i) and for terminated trellis code
of (ii) as shown in Table 1 after a little manipulation,
where qv = exp[vbr] = exp[Nθr] holds (See Appendix
C).

Example 1 On a very noisy channel, the negative ex-
ponent e(r)

2r of G in (19) for a tail biting trellis code is
larger than that E(R)

R of G in (18) for an ordinary block
code, independent of θ except for rates 0 ≤ R = r ≤ C

4 .
The two negative exponents are shown in Fig. 1 (See
Appendix D). 2

4. Concatenated codes with tail biting trellis
inner codes

First, consider the original concatenated code C [1]
over GF (q) with an ordinary block inner code and a
Reed Solomon (RS) outer code.
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Figure 1: Negative exponents in terms of G for very
noisy cannel.

Lemma 1 ([1]) There exists an original concatenated
code C of overall length N0 and overall rate R0 in
nats/symbol whose probability of decoding error Pr(ε)
is given by

Pr(ε) ≤ exp[−N0EC(R0)] (0 ≤ R0 < C) (20)

where

EC(R0) = max
0<R<C

(
1− R0

R

)
E(R) (21)

which is called the concatenation exponent [1]. While
the overall decoding complexity G0 for the code C is
given by at most

G0 = O(N2
0 log2N0) (22)

where the outer decoder of the RS code performs gen-
eralized minimum distance (GMD) decoding. 2

Next, let us suppose a block concatenated code CT
over GF (q) constructed by a (u, v, b) tail biting trellis
inner code and an (n, k) RS outer code, where

n = qu (23)

holds. From (9), we have the following theorem.

Theorem 2 There exits a block concatenated code CT
of length N0(= nN) and rate R0 which satisfies

Pr(ε) ≤ exp[−N0θeC(R0)] (0 < θ ≤ 1
2
, 0 ≤ R0 < C)

(24)

where

eC(R0) = max
0<r<C

(
1− R0

r

)
e(r) (25)

Proof: Let the block inner code be the tail biting trellis
code of length N and rate r whose average probability of
decoding error pε satisfies

pε ≤ exp[−Nθe(r)] (26)

from Theorem 1. Then the over-all probability of decoding
error Pr(ε) is given by

Pr(ε) ≤ exp
h
−N0θ

“
1− R0

r

”
e(r)

i
(27)

where we assume GMD decoding of the RS outer code of

length n(N0 = nN), completing the proof. 2

Substitution of R0
r and r in (25) into µ and R

µ in
(8), respectively, gives the following Corollary.

Corollary 2 From (8) and (25), the relation

eC(R0) = E(R0) (28)

holds. 2

Although the exponent in (24) of the code CT is es-
sentially coincides with that of the concatenated code
with a convolutional inner code and a block outer code
[7], note that the latter is a member of a class of con-
volutional codes.

Let the decoding complexity of the inner code be
denoted by GI , that of the outer code, by gO, and that
of overall concatenated code CT , by G0. Since the max-
imum likelihood decoder for the tail biting inner code
of length N and rate r requires N2 exp[2Nθr] com-
parisons for each received word of the inner code, and
repeats them n times, we have

GI = O(nN2 exp[2Nθr]) (29)

On the other hand, for the GMD decoder for the (n, k)
RS outer code, we have [3]

gO = O(n2 log4 n) (30)

Substituting (23) into (29) and (30), and letting
max[GI , gO] = G0, the overall decoding complexity G0

for the code CT is calculated as follows:

Theorem 3 The overall decoding complexity for a
block concatenated code CT of length N0 is give by

G0 = O(N2
0 log2N0) (0 < θ ≤ 1

2
) (31)
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Proof: From (29) and (30), we have

G0 = max[GI , gO]

= max[O(nN2 exp[2Nθr]), O(n2 log4 n)]

= max[O(n log2 n · n2θ), O(n2 log4 n)]

= max[O(n1+2θ log2 n), O(n2 log4 n)]

= O(n2 log4 n) (0 < θ ≤ 1

2
) (32)

where we have used (23) and n = exp[Nr] or N = O(log n).
Since

N0 = nN = O(n log n) (33)

or

n = O
“ N0

logN0

”
(34)

we have (31) from (32) by disregarding the lower order

terms than or equal to log logN0. 2

From Theorem 2, the error exponent θec(R0) for
the code CT is larger than that EC(R0) for the code
C at high rates with the same decoding complexity1

from Lemma 1 and Theorem 3. Especially, the former
approaches a half of the block code exponent 1

2E(·) as
θ → 1

2 .

Example 2 The case of θ = 1
2 gives the largest error

exponent for the code CT with the same overall de-
coding complexity for the code CT and for the code C.
On a very noisy channel, the error exponent for the
code CT is larger than that for the code C, except for
0 ≤ R0 ≤ 0.06C. Substitution of (D.1) and (D.2) into
(25) and (21), respectively, gives Fig. 2. 2

We easily see that the error exponent for the code
CT is larger than that for code C at high rates with
the same decoding complexity over binary symmetric
channels.

5. Generalized version of concatenated codes
with tail biting trellis inner codes

A detailed discussion is omitted here, it is obvious
that the code CT can be applicable to construct a gen-
eralized version of concatenated code [3] called a code
C(J)
T . A larger error exponent can be obtained by the

code C(J)
T . The decoding complexity, however, increases

as J increases, although it is still kept in algebraic order
of overall length N0.

1It is difficult to clearly state the superiority of the code CT
in contrast to the discussion given in such as (18) and (19), since
we cannot show Pr(ε) as a function of G in this section. This
is because G appears exponential part, and hence asymptotic
arguments have no meaning.

Figure 2: Error exponents for code C and code CT for
very noisy cannel.

6. Concluding remarks

We have shown that the error exponents of block
codes and block concatenated codes are improved by
using tail biting trellis codes at high rates without in-
creasing the decoding complexity. Improvements in
both error exponents and the decoding complexity at
low rates will be further investigation.

We prefer to discuss the performance obtainable
with the proposed code rather than compute in detail
that with a particular code. As stated earlier, since the
random coding arguments suggest some useful aspects
to construct the code, we should note to make them
applicable to a practical code, which is also a future
work.
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Appendix A: Derivations of error exponents and
decoding complexity for a truncated trellis code
and a terminated trellis code in Table 1.

(a) For a truncated trellis code, we have [6]

Pr(ε) ≤ qρu exp[−ubE0(ρ)]

= exp
˘−N [E0(ρ)− ρr]¯ (0 ≤ ρ ≤ 1)

= exp[−NE(r)] (A.1)
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where qρu = exp[Nρr], since r = ( 1
b
) ln q (q = exp[rb],

qρu = exp[rbρu] = exp[Nρr]), and E0(ρ) is the Gallager’s
function. Obviously, the decoder requires qv comparisons
for each step, and repeats them u times. Since these oper-
ations are carried out u units logic, we have N2qv compu-
tational work as the decoding complexity.
(b) For a terminated trellis code, we have [6]

Pr(ε) ≤ (u− v)K1 exp
˘− vb[e(r)− ε]¯

≤ NK1 exp
˘−Nθ[e(r)− ε]¯

= NK1 exp
˘−N [E(R)− ε]¯ (A.2)

where

E(R) = max
0≤ρ≤1

[E0(ρ)− ρR]

R = (1− θ)r (A.3)

and K1 is a constant independent of u. Substituting
θ = 1 − µ in (8) and disregarding ε in (A.2), we have an
error exponent E(R). Similar derivations to (a) gives N2qv

computational work for the terminated trellis code.

Appendix B: Proof of Corollary 1

From (10), we have

G ∼ exp[2Nθr + 2 lnN ] (B.1)

Substitution of (B.1) into (9) gives

Pr(ε) ≤ exp[−Nθe(r)]
= G

−e(r)
2r+o(1) (B.2)

where

o(1) =
2 lnN

Nθ
→ 0 as N →∞ (B.3)

Disregarding the term o(1) in (B.2), we complete the proof.

Appendix C: Derivations of the exponents of
Pr(ε) in terms of G

As similar to Appendix B,
(a) For a truncated trellis code, we have

Pr(ε) ≤ exp[−NE(r)]

∼ G
−E(r)
θr+o(1) (C.1)

where

o(1) =
2 lnN

N
→ 0 as N →∞

(b) For a terminated trellis code, we have

Pr(ε) ≤ exp[−NE(R)]

∼ G
−E(R)
θr+o(1)

= G
−E(R)

θR/(1−θ)+o(1) (C.2)

where

o(1) =
2 lnN

N
→ 0 as N →∞

yielding the proof.

Appendix D: The exponents e(r)
2r and E(R)

R of
Pr(ε) in terms of G for a very noisy channel

The error exponent for a very noisy channel is given by [1]

e(r) =


C
2
, 0 ≤ r < C

2
;

C − r, C
2
≤ r < C (D.1)

E(R) =

 C
2
−R, 0 ≤ R < C

4
;

(C
1
2 −R 1

2 )2, C
4
≤ R < C (D.2)

Substitution of (D.1) and (D.2) into (19) and (18), re-
spectively, gives Fig. 1.
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