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Abstract

We discuss soft-decision decoding which achieves near-
maximum likelihood decoding (MLD) of binary block
codes over a Markov modulated channel. In this pa-
per, a new soft-decision decoding algorithm using a
generalized Expectation Maximization (EM) algorithm
is proposed. Each iteration step of the proposed de-
coding algorithm can be regarded as performing MLD
over an additive white Gaussian noise (AWGN) chan-
nel, so the proposed decoding algorithm can employ
most of conventional efficient methods devised for the
AWGN channel. The simulation results show that the
proposed decoding algorithm achieves almost the same
performance as that of MLD which needs exhaustive
search of codewords.

1. Introduction

Soft-decision decoding (SDD) reduces the block er-
ror probability of decoding by taking advantage of in-
formation of channel noise. On additive white Gaus-
sian noise (AWGN) channels, many researchers have
devoted to develop efficient maximum likelihood de-
coding (MLD) and sub-optimum SDD algorithms for
block codes [1, 2, 3, 7].

Recently, additive noise channels with a hidden
Markov model have attracted great attentions due to
its practicality. On these channels, several symbol-wise
maximum a-posteriori probability (MAP) decoding al-
gorithms of block codes have been proposed [6, 8, 9].
However, MLD or sub-optimum SDD algorithms that
reduce the block error probability of decoding over
these channels have not sufficiently studied. To the au-
thors’ knowledge, only sub ML (sequence-wise MAP)
decoding algorithm for trellis codes has been devised
[5]. To aim at reducing the block error probability of
decoding, we need to consider much larger search space
of the most likely codeword than that in an AWGN
channel, since it is direct product of the spaces of code-
words and channel states sequences.

In this paper, we propose a new SDD algorithm of
block codes using a generalized Expectation Maximiza-
tion (EM) algorithm [10] over Markov modulated Gaus-
sian noise (MMGN) channels. In the EM principle, we
can reduce the search space at each iteration step. The
proposed decoding algorithm is an iterative algorithm
and each iteration step can be conducted similar to an
MLD algorithm of block codes over an AWGN channel.
We then derive (i) reliability measure of binary sym-
bols and (ii) a termination condition of the decoding
algorithm. As a result, we show by simulations that
the proposed SDD algorithm achieves near MLD with
relatively small decoding complexity.

2. Preliminary

2.1. Channel Model

Assume that a channel is modeled as the Markov
model with finite discrete states S = {0, 1, . . . , |S|−1}.
At a state i ∈ S, a Gaussian noise with mean 0
and variance σ2(i) is generated. We denote a state
of Markov model at time j with sj and let s(m)

j =
(sj−m+1, sj−m+2, . . . , sj) ∈ Sm for some integer m ≥ 1.
Then transition probability of the m-th order Markov
model can be expressed as1 p(sj = i|s(m)

j−1). Assuming
that the Markov model has stationary distribution, let
p(i) be the stationary probability at i ∈ S. We assume
that the order of Markov model, transition and sta-
tionary probabilities are known to the decoder. This
channel is called an MMGN channel.

Let C be a binary linear (n, k) block code of length
n, the dimension of code k with a generator matrix
G. A codeword c = (c1, c2, . . . , cn) ∈ {0, 1}n of C
is mapped into x = (x1, x2, . . . , xn), xj = (−1)cj ∈
{−1,+1} with equal probability and x is transmitted
over an MMGN channel. At the decoder, we estimate

1We define that elements of s(m)
j−1 take no values if the time

indices are negative, e.g., p(s1|s−1, s0) = p(s1|s0) for m = 2.
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the transmitted codeword c from the received sequence
r = (r1, r2, . . . , rn) ∈ Rn.

2.2. Reliability-based MLD Algorithm over
AWGN channel

We describe reliability-based MLD algorithms with
the column-permuted generator matrix [1, 2, 3, 7] that
efficiently search the most likely codeword over an
AWGN channel. In a decoder, the received sequence
r is mapped into a sequence θ = (θ1, θ2, . . . , θn), θj
= ln P (rj |cj=0)

P (rj |cj=1) , where P (rj |cj) denotes the likelihood
function of cj . Then, we obtain the hard decision re-
ceived sequence y = (y1, y2, . . . , yn) ∈ {0, 1}n by

yj =
{

0, if θj ≥ 0;
1, otherwise. (1)

For ∀j ∈ [1, n], |θj | is called j-th reliability (over the
AWGN channel)2. In this paper, we call any measures
which express the confidence value of yj , j-th reliability.

For c ∈ C, we define

L(c) =
∑

j|cj 6=yj
|θj |. (2)

Then, arg maxc∈C
{
P (r|c)} = arg minc∈C

{
L(c)

}
[7].

An MLD algorithm searches the most likely codeword
cbest such that cbest = arg minc∈C L(c).

The reliability-based decoder first re-orders the
most reliable and linearly independent (MRI) k col-
umns of a generator matrix in non-increasing reliabili-
ties. Then it performs standard row operations to make
these k columns the identity matrix. We denote the re-
sultant matrix by G̃. We obtain r̃ and ỹ by the same
permutation of r and y, respectively. Let C̃ be the code
obtained by the same permutation for C .

Let u = (ỹ1, ỹ2, . . . , ỹk) be the MRI k symbols of
ỹ and the initial codeword of search is obtained by
c̃0 = uG̃. After obtaining c̃0, we generate k dimen-
sional vectors t ∈ {0, 1}k to obtain candidate code-
words by c̃ = (u ⊕ t)G̃, where we call t ∈ {0, 1}k test
error patterns (TEPs)3. Then, we iteratively gener-
ate candidate codewords and compute their likelihood.
The decoder outputs the most likely codeword c̃best.

The right hand side (r.h.s.) of eq. (2) is a sum of
reliabilities (positive real number). Using this struc-
ture of eq. (2), (i) acceptance criteria of the most likely
codeword and (ii) elimination criteria of unnecessary
TEPs are proposed to make the MLD algorithm effi-
cient [1, 2, 3].

2[i, j] denotes the set of integers from i to j, for two integers
i and j such that i ≤ j.

3⊕ represents Exclusive OR operation.

2.3. Generalized EM Algorithm
The EM algorithm is an iterative procedure for

computing (near) maximum likelihood estimation of
unknown parameter ψ from observed data zobs. Let
zmis and z = (zobs, zmis) be “missing data” which can-
not be observed directly and “complete data ”, respec-
tively. Even when it is practically infeasible to maxi-
mize the likelihood function P (zobs|ψ), it is often easy
to maximize the joint likelihood function P (z|c) that
includes missing data [4, 10]. The EM algorithm iter-
atively maximizes an expectation of P (z|c) by the fol-
lowing steps. We here denote the estimated sequence
in (l−1)-th iteration by ψ(l) where ψ(1) is chosen arbi-
trarily.

E step: Calculate the following function.

Q(ψ|ψ(l)) = Ez

[
lnP (z|ψ)

∣∣zobs,ψ
(l)
]
. (3)

M step: Search ψ(l+1) such that

ψ(l+1) = arg max
ψ

Q(ψ|ψ(l)). (4)

Until ψ(l) = ψ(l+1), the above steps are iteratively car-
ried out. 2

In M step, a generalized EM (GEM) algorithm sets
ψ, which satisfies Q(ψ|ψ(l)) ≥ Q(ψ(l)|ψ(l)) instead of
maximizing Q(ψ|ψ(l)), as estimated sequence ψ(l+1).
Namely, the EM algorithm is a specific instance of
GEM algorithms [10].

3. Soft-Decision Decoding Algorithm over
MMGN Channel

3.1. Reliability-based SDD algorithm via GEM
algorithm

Let s = (s0, s1, . . . , sn) ∈ Sn+1 be the state se-
quence of the channel when a transmitted sequence x
is input to the channel where x and s are mutually
independent. Then, the likelihood of a codeword c is

P (r|c) =
∑

s∈Sn+1

n∏

j=1

p(sj |s(m)
j−1)P (rj |sj , cj). (5)

To perform MLD, we have to find the codeword which
maximizes eq. (5). However, since the r.h.s. of eq. (5)
includes marginalization with all s ∈ Sn+1, the conven-
tional efficient algorithm, such as the Viterbi algorithm,
cannot be straightforwardly implemented4. Then, we
will propose a new SDD algorithm via a GEM algo-
rithm.

We regard a sequence s ∈ Sn+1 as missing data in
the GEM algorithm. Similar to eq. (3), we define the

4The likelihood of a given c can be computed by the well-
known Baum-Welch algorithm [4, 8] with the complexity of O(n).
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function Q(c|c(l)) at l-th step of the GEM algorithm
as

Q(c|c(l)) = Es

[
lnP (r, s|c)

∣∣∣r, c(l)
]
. (6)

For j ∈ [1, n], we obtain the hard-decision symbol yj
by eq. (1), where P (rj |cj) can be computed by P (rj |cj)
=
∑
i∈S p(sj = i)P (rj |sj = i, cj).

Theorem 1 For some c(l) ∈ C, we define

M (l)(c) =
∑

j| cj 6=yj

∑

i∈S

p(sj = i|r, c(l))
σ2(i)

∣∣2rj
∣∣. (7)

Then, for c and c′,

Q(c|c(l)) ≥ Q(c′|c(l)) iff M (l)(c) ≤M (l)(c′). (8)

Therefore, for arbitrary subcode C′,
arg max

c∈C′
Q(c|c(l)) = arg min

c∈C′
M (l)(c). (9)

2

Proof: See appendix A.

By Theorem 1, maximizing Q(·|c(l)) can be carried
out by minimizing M (l)(·). We here define

φ
(l)
j = 2rj

∑

i∈S

p(sj = i|r, c(l))
σ2(i)

, j ∈ [1, n]. (10)

Then eq. (7) is now M (l)(c) =
∑
j| cj 6=yj |φ

(l)
j | which

has similar expression to eq. (2). Therefore, in the l-th
M step, we can efficiently search c(l+1) which decreases
M (l)(·) by the MLD algorithm described in Sect. 2.2,
which minimizes L(·). In this search, |φ(l)

j |, j ∈ [1, n],
is regarded as j-th reliability.

We describe the proposed SDD algorithm below,
where c(1) is some binary sequence.

[The proposed SDD algorithm]

E step: For j ∈ [1, n] and i ∈ S, compute p(sj =
i|r, c(l)) by the Baum-Welch algorithm [4, 8]. For
j ∈ [1, n], we obtain |φ(l)

j | by eq. (10).
M step: Search c(l+1) satisfying the following equa-

tion via an MLD algorithm5 of Sect. 2.2.

M (l)(c(l+1)) ≤M (l)(c(l)). (11)

The above steps are iterated until c(l) = c(l+1), then
c(l) is output as cbest. 2

The proposed SDD algorithm is not guaranteed to
converge the global maxima because of the EM princi-
pal [10].

5We will describe the algorithm in detail in the next section.

In the l-th M step, the reliability |φ(l)
j |,∀j ∈ [1, n],

satisfies

φ
(l)
j = Esj

[
ln
P (rj |sj , cj = 0)
P (rj |sj , cj = 1)

∣∣∣r, c(l)
]

=
∑

i∈S
p(sj = i|r, c(l)) ln

P (rj |sj = i, cj = 0)
P (rj |sj = i, cj = 1)

. (12)

i.e., φ(l)
j is expectation of joint log likelihood ratio of sj

and cj with p(sj = i|r, c(l)). The derivation of eq. (12)
will be given in Appendix B.

3.2. The l-th M Step of the Proposed Decoding
Algorithm

In this section, we describe the l-th M step of the
proposed SDD algorithm.

Let G̃(l) be a permuted generator matrix whose left-
most k columns are MRI in non-increasing reliabilities
|φ(l)
j |. We denote the best codeword obtained so far by

c̃∗. The algorithm searches candidate codewords satis-
fying M (l)(c̃) ≤M (l)(c̃∗) and the most likely codeword
among them is set to c̃(l+1).

For a TEP t = (t1, t2, . . . , tk), we define a evaluation
function of t as

∆(l)(t) =
∑

j|tj=1

|φ̃(l)
j |. (13)

Lemma 1 (Elimination of a TEP) In the l-th M
step, assume that a generated TEP t satisfies

∆(l)(t) ≥M (l)(c̃∗). (14)

Then the candidate codeword c̃ = (u⊕ t)G̃(l) given by
t satisfies M (l)(c̃) ≥M (l)(c̃∗).
Proof: From the definitions of M (l)(c) and ∆(l)(t),

M (l)(c̃) =
∑

j|tj=1

∣∣φ̃(l)
j

∣∣+
n∑

j=n−k+1

(ỹj ⊕ c̃j)
∣∣φ̃(l)
j

∣∣

= ∆(l)(t) +
n∑

j=n−k+1

(ỹj ⊕ c̃j)
∣∣φ̃(l)
j

∣∣. (15)

Therefore, M (l)(c̃) ≥ ∆(l)(t). Eq. (14) implies M (l)(c̃)
≥M (l)(c̃∗). 2

From Lemma 1, we need not encode a TEP satisfying
eq. (14) and the next TEP is generated6. In order to
judge if the l-th M step can be terminated, we have the
following theorem which is readily proven by Lemma 1.

6Although more effective evaluation functions than ∆(l)(·) are
devised in [1, 2, 3], we will not describe them for simplicity.
However, they can be also applicable to the proposed decoding
algorithm in this paper.
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Theorem 2 (Condition of Local Termination)
In the l-th M step, let T (l) be a set of TEPs not

generated yet. If

min
t∈T (l)

{
∆(l)(t)

} ≥M (l)(c̃∗), (16)

then the algorithm outputs c̃(l+1) = c̃∗. 2

We can use eqs. (14) and (16) to reduce the number of
searched candidate codewords.

We describe the the l-th M Step of the proposed
SDD algorithm.

[The l-th M Step of the Proposed Algorithm]

S1) Construct G̃(l) and generate the initial code-
word c̃0 := uG̃(l). If P (r|c(l)) ≥ P (r|c0), then
set c̃best := c̃(l), otherwise set c̃best := c̃0. Set
Pbest := P (r|cbest), Mbest := M (l)(c̃best).

S2) Generate a TEP t ∈ T (l) and set T (l) := T (l) \ t.
a) If eq. (14) holds for t, then go to step S3).
b) Set c̃ := (u ⊕ t)G̃. If Pbest ≥ P (r|c), then set
Pbest := P (r|c),Mbest := M (l)(c̃), c̃best := c̃.

S3) If eq. (16) is satisfied or T (l) = ∅, then output
c̃(l+1) := c̃best and terminate the l-th M step. Oth-
erwise go to step S2). 2

The proposed SDD algorithm can be terminated
by the following conditions: assume that eq. (16) holds
and c̃(l) = c̃∗, then c̃(l+1) = c̃∗ from Theorem 2. i.e.,
the SDD algorithm is converged and c̃(l) is output as
the estimated codeword.

4. Evaluation by Simulations

4.1. Conditions

We compare four decoding algorithms: (i) an ideal
MLD algorithm given the information of the real
state transition sequences (denoted by “Ideal”)7, (ii)
the MLD algorithm by exhaustive search (denoted by
“MLD”), (iii) the proposed SDD algorithm (denoted
by “Proposed”), (iv) the MLD algorithm by regarding
noises are AWGN at average SNR [dB] (denoted by
“Conventional” or “Conv.”). In M step of the pro-
posed SDD algorithm, “Ideal” and “Conventional” al-
gorithms, we generate TEPs according to the method
of Gazelle et al. [2]. The initial sequence in the pro-
posed algorithm is set as c(1) = y. For each decoding
algorithm, at least 10,000 codewords are transmitted
until 100 decoding errors occur. We evaluate them by
(i) decoding performance (block error rate) and (ii) de-
coding complexity (the number of searched candidate

7It is obvious that results of the ”Ideal” algorithm can never
be obtained in an actual decoder.

codewords for each decoding algorithm and the number
of iteration for the proposed SDD algorithm8).

We assume the first-order Markov Model with S =
{0, 1}, p(0) = 0.9 and p(1|0) = 0.1 for the MMGN
channel. Furthermore, we assume the variances of the
Gaussian distribution of two states satisfy σ2(1) =
ρσ2(0), ρ ≥ 1.

Figure 1: Decoding results for the (24, 12) extended Golay
code at ρ = 5.5.

Figure 2: Decoding results for the (24, 12) extended Golay
code at ρ = 8.5.

4.2. Simulation Results

(Decoding Performance)
In Figs. 1, 2 and 3, we show results of decoding

performances at ρ = 5.5, 8.5 and average SNR 6.0 [dB],
respectively, for the (24,12) extended Golay code. In
Fig. 4, we show results for the (63,30) BCH code at
ρ = 8.5

By Fig. 1, block error rates of the MLD and of the
proposed SDD algorithms are almost the same at each
SNR when ρ = 5.5. It can be expected that from small
to medium value of ρ, posterior probability P (sj |r, c(l))

8One iteration consists of E and M steps.
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Figure 3: Decoding results for the (24, 12) extended Golay
code at average SNR 6.0 [dB].

Figure 4: Decoding results for the (63, 30) BCH code at ρ =
8.5.

in eqs. (10) and (12) can be estimated highly accu-
rately. By Fig. 2, although we see slight degradation of
the performance of the proposed algorithm from MLD
at ρ = 8.5, it is greatly improved compared with the
conventional algorithm. Fig. 3 also shows that the pro-
posed SDD algorithm performs as well as MLD algo-
rithm at each ρ. Note that at ρ = 1, the MMGN
channel is reduced to the AWGN channel.

By Fig. 4, we see the similar result for the (63,30)
BCH code. Remark that the gain of the proposed al-
gorithm from the conventional algorithm is larger than
that for the (24,12) extended Golay code. The similar
results have obtained at ρ = 5.5 and 6.0 [dB] for the
(63,30) BCH code.

(Decoding Complexity)
In Tables 1 and 2, we show results of the number of

generated candidate codewords for each decoding algo-
rithm at ρ = 8.5 for the (24,12) extended Golay code
and the (63,30) BCH code, respectively. We also show
results of the average (denoted by “ave”) and maxi-

Table 1: The number of candidate codewords for each decoding
algorithm and the number of iteration for the (24, 12) extended
Golay code at ρ = 8.5

SNR codewords iterations
[dB] MLD Conv. Proposed ave max

1.0 3.55 · 103 5.93 9.67 1.74 3
2.0 3.17 · 103 4.96 7.52 1.55 3
3.0 2.66 · 103 4.24 5.79 1.30 3
4.0 2.09 · 103 3.42 4.48 1.02 3
5.0 1.54 · 103 2.61 3.10 0.754 3
6.0 1.14 · 103 1.86 1.99 0.558 3

Table 2: The number of candidate codewords for each decoding
algorithm and the number of iteration for the (63, 30) BCH code
at ρ = 8.5

SNR codewords iterations
[dB] Conv. Proposed ave max

1.0 4.44 · 103 1.47 · 104 1.99 3
2.0 3.86 · 103 9.55 · 103 1.97 3
3.0 3.19 · 103 6.67 · 103 1.88 3
4.0 2.19 · 103 3.49 · 103 1.69 3
5.0 1.33 · 103 1.26 · 103 1.42 3
6.0 5.94 · 102 3.94 · 102 1.14 3

mum (denoted by “max”) number of iterations for the
proposed SDD algorithm.

Table 1 shows that the number of generated can-
didate codewords for the proposed SDD algorithm at
1.0 [dB] is less than 10 which is less than twice that
of the conventional algorithm. As for the number of
iterations, the average and maximum numbers are no
more than two and three, respectively.

Table 2 also shows the effectiveness of the proposed
SDD algorithm, whose searched codewords is at most
less than four times that for the conventional algorithm,
for the (63,30) BCH code at each average SNR. It is
noteworthy that, at high average SNRs, the number
of searched codewords in the proposed SDD algorithm
is less than that for the conventional algorithm. Re-
mark that the exhaustive MLD algorithm cannot be
conducted because of its large dimension. As for the
number of iterations, the behavior is not different from
the case of (24,12) extended Golay code, so we can say
that the proposed algorithm is also effective for large
codes.

We have the similar results at ρ = 5.5 for both
codes. These results indicate the effectiveness of
Lemma 1 and Theorem 2.

5. Concluding Remarks

In this paper, we propose a new SDD algorithm
of block codes over the MMGN channel via a GEM
algorithm. The proposed algorithm has an effective
termination condition in each iteration step. We show
by simulations that the proposed algorithm achieves

827



near MLD with relatively small complexity.
As for further works, we need to devise a method

for eliminating unnecessary iterations of the proposed
algorithm. Since the proposed SDD algorithm largely
depends on the initial sequence c(1), a measure for se-
lecting a good initial sequence is also needed.
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Appendix A: Proof of Theorem 1

The function Q(c|c(l)) for some c(l) ∈ C is expanded as:

Q(c|c(l)) =
∑

s∈Sn+1

p(s|r, c(l)) lnP (r,s|c)

=
∑

s∈Sn+1

p(s|r,c(l))
{

lnP (r|s,c) + ln p(s)
}
, (17)

where the last equation is lead by p(s|c) = p(s). The first
term of eq. (17), which only depends on a choice of c, is
further expanded as follows:

∑

s∈Sn+1

p(s|c(l),r) lnP (r|s,c)

=

n∑
j=1

∑
i∈S

p(sj = i|c(l),r) lnP (rj |sj = i, cj). (18)

From the assumption of Gaussian distribution at each state
sj ∈ S,

lnP (rj |sj = i, cj) =
{
− (rj − (−1)cj )2

2σ2(i)

}
+D (19)

where D is the independent term of c. Substituting the
r.h.s. of eq. (19) into eq. (18),

∑

s∈Sn+1

p(s|c(l),r) lnP (r|s,c)

=

n∑
j=1

∑
i∈S

p(sj = i|c(l),r)
{
− (rj − (−1)cj )2

2σ2(i)
+D

}

=

n∑
j=1

∑
i∈S

p(sj = i|c(l),r)

σ2(i)
rj(−1)cj +D′, (20)

where D′ is the independent term of c. Then from eqs. (17)
and (20), we have

Q(c|c(l)) =

n∑
j=1

∑
i∈S

p(sj = i|c(l),r)

σ2(i)
rj(−1)cj +D′′,

=

n∑
j=1

∑
i∈S

p(sj = i|c(l),r)

σ2(i)

∣∣rj
∣∣−M (l)(c) +D′′,(21)

where the second term D′′ is independent of c and eq. (21)
indicates eq. (9). The proof of eq. (8) is straightforward
from eq. (9).

Appendix B: Derivation of eq. (12)

From Gaussian distribution of eq. (19), we have

∑
i∈S

p(sj = i|r, c(l)) ln
P (rj |sj = i, cj = 0)

P (rj |sj = i, cj = 1)

=
∑
i∈S

p(sj = i|r, c(l))

×
{
− 1

2σ2(i)
(rj − 1)2 +

1

2σ2(i)
(rj + 1)2

}

=
∑
i∈S

p(sj = i|r, c(l))
2rj
σ2(i)

. (22)

Eq. (22) and the definition of φ
(l)
j prove eq. (12).
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