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Abstract

We derive burst error correctable length of the low-
density parity-check (LDPC) codes by the iterative
decoding algorithms. By results of simulation, we
show that the decoding performance of iterative decod-
ing algorithms for the LDPC codes over the Markov-
modulated binary symmetric channels (MM-BSC) are
affected by the distance between elements (DBE). We
also show that some column permuted LDPC codes
that have larger DBE, have robustness in error per-
formance over the MM-BSC, compared to the original
LDPC codes.

1. Introduction

Iterative decoding algorithms of low-density parity-
check (LDPC) codes [4] for channels with memory,
such as the Markov-modulated channels (MMC), have
been studied [3], [7] as well as for memoryless chan-
nels. These works have derived the iterative decoding
algorithms combined with channel state estimation al-
gorithm, such as the BCJR algorithm [1]. However,
these works have not been much studied on the code
structure of the LDPC codes.

In this paper, we consider the burst error correct-
ing capability of the LDPC codes assuming the itera-
tive decoding algorithms, such as the bit-flip (BF) and
the sum-product (SP) decoding algorithms. We first
introduce the distance between elements (DBE) [5] as
a distance between elements of 1 at each rows of parity-
check matrix of the LDPC codes. Then we derive burst
error correctable length of the LDPC codes by the it-
erative decoding algorithms that depend on the DBEs.
We also point out by results of simulation that some
conventional construction methods with small value of
the DBEs have weakness in error performance for the
Markov-modulated binary symmetric channels (MM-
BSC). We then propose a new modification method for
construction of LDPC codes to make them robustness
in error performance over the MM-BSC, compared to
the original codes.

2. Preliminaries

2.1. LDPC codes [4]

Let H = [Hmn] be a parity-check matrix whose row
and column lengths are M and N , respectively, and
c = (c1, c2, . . . , cN ) ∈ {0, 1}N be a codeword of LDPC
codes such that cHT = 0. (N,wr, wc) LDPC codes
have parity-check matrix with uniform weight wr and
wc for each row and column, respectively. We define
the following construction methods of LDPC codes.
Definition 1 (The Method G). LDPC codes given
by the method G consists of wc pieces of N/wr(, ρ)×N
submatrices H(i)

G , i = [1, wc], where row and column
weight are wr and 1, respectively [4]. The elements of
first submatrix such that H(1)

G = [H(1)
Gkn

], k ∈ [1, ρ], are
given by

H
(1)
Gkn

4
=
{

1, n ∈ [(k − 1)wr + 1, kwr];
0, otherwise. 2

Definition 2 (The Method P). LDPC codes given
by the method P consists of wrwc pieces of ρ×ρ subma-
trices H(i,j)

P , j = [1, wr], whose row and column weight
are 1 [4]. 2

A parity-check matrix is represented by the bipartite
graph, which consists of two types of nodes called check
nodes indexed by position of rows, and symbol nodes
indexed by position of columns. A check node m and a
symbol node n are connected with an edge if and only
if Hmn = 1. A loop in the bipartite graph is a closed
pass that starts from a symbol node and returns to the
same symbol node through edges without passing the
same edges more than once. A length of a loop is a
number of edges of the closed pass.

2.2. The BF and the SP decoding algorithms

The BF and the SP decoding algorithms are itera-
tive algorithms to estimate a transmitted codeword at
symbol by symbol from a received sequence with up-
dating two types of messages on the edge: messages
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from a symbol node to a check node and vice versa, re-
spectively. We define the following sets for all (m,n),
m ∈ [1,M ], n ∈ [1, N ], such that Hmn = 1.

A(m)
4
= {n : Hmn = 1} = {nm,1, nm,2, . . . , nm,wr},

B(n)
4
= {m : Hmn = 1} = {mn,1,mn,2, . . . ,mn,wc},

where nm,1 < nm,2 < . . . < nm,wr and mn,1 < mn,2 <
. . . < mn,wc , respectively.

[The BF decoding algorithm]
In the case of the BF decoding algorithm, messages

are defined by r(l)
mn and v(l)

mn where l denotes the number
of iterations.

b1) For each (m,n) satisfying Hmn = 1, set r(0)
mn :=

yn. Set l := 1.
b2) For each (m,n) satisfying Hmn = 1, set v(l)

mn as
following:

v(l)
mn :=

∑

n′∈A(m)\n
r

(l−1)
mn′ . (1)

b3) For each (m,n) satisfying Hmn = 1, set r(l)
mn as

following:

r(l)
mn =

{
a, if ∀m′ ∈ B(n) \m, v(l)

m′n = a;
yn, otherwise.

(2)

b4) For each n, set ĉ(l)n as following:

ĉ(l)n =
{
a, if ∀m ∈ B(n), v(l)

mn = a;
yn, otherwise.

(3)

b5) If l = lmax or ĉHT = 0, then ĉ(l) as an estimated
sequence and stop the algorithm. Otherwise set l :=
l + 1 and go to b2).

[The SP decoding algorithm]
In the case of the SP decoding algorithm, messages

are defined by α
(l)
mn and β

(l)
mn. The log likelihood ratio

(LLR) is defined by λn , Pr(yn|cn=0)
Pr(yn|cn=1) .

s1) For each (m,n) satisfying Hmn = 1, set β(0)
mn :=

λn. Set l := 1.
s2) For each (m,n) satisfying Hmn = 1, set α(l)

mn as
following:

α(l)
mn := 2 tanh−1

( ∏

n′∈A(m)\n
tanh

(
2−1β

(l−1)
mn′

))
. (4)

s3) For each (m,n) satisfying Hmn = 1, set r(l)
mn as

following:

β(l)
mn := λn +

∑

m′∈B(n)\m
α

(l)
m′n. (5)

s4) For each n, set ĉ(l)n as following:

ĉ(l)n =
{

0, if λn +
∑
m∈B(n) α

(l)
mn ≥ 0;

1, otherwise.
(6)

s5) If l = lmax or ĉHT = 0, then ĉ(l) as an estimated

sequence and stop the algorithm. Otherwise set l :=
l + 1 and go to s2).

2.3. MM-BSC

We assume a codeword of the LDPC code, denoted
by c is transmitted through the MM-BSC. c is dis-
turbed by additive noise z = (z1, z2, . . . , zN ) ∈ {0, 1}N
and the decoder receives a sequence y = c ⊕ z. The
decoder estimates the transmitted codeword from the
received sequence. The MM-BSC is hidden Markov
model that consists of state set S = {S1, S2, . . . , S|S|},
with transition probability p(s|s′) from the state s′ ∈ S
to the state s ∈ S, and the stational probability dis-
tribution π = (πs1 , πs2 , . . . , πs|S|). Following to the
state transition of channels at time n, zn is generated
as channel noise. Let Ps be the error probability at
state s, then the average error probability of the MM-
BSC is pave ,

∑
s∈S πsPs.

3. Proposed modification method

3.1. Distance between elements

We define the distance between elements (DBE) as
a distance between elements of 1 at each row of the
parity-check matrix.
Definition 3 (The DBE). The DBEs dmγ , m ∈
[1,M ], γ ∈ [1, wr−1], and the minimum value of DBEs
Dmin are defined by the following equations, respec-
tively:

dmγ , nm,γ+1 − nm,γ , (7)

Dmin , min
m,γ

dmγ . (8)

2

DBEs of the first submatrix of LDPC codes con-
structed by the method G are fixed to 1, so the distribu-
tion of DBEs is drawn to 1. The average value of DBEs
of the LDPC codes constructed by the method P is
maximum, so for a given parameter of (N,wr, wc), val-
ues of DBEs take relatively large [5]. Remark that the
DBE is similar to the minimum space distance (MSD)
[6] as a minimum value of zero-runs between elements
of 1 for all rows of parity-check matrix.

3.2. Modification method for constructions of
LDPC codes

For a parity-check matrix, the values of DBE are
changed by column permutation. While column per-
muted parity-check matrices are equivalent to each
other for memoryless channels in a sense that param-
eter of the code, such as length of the code, or weight
distribution of the codewords are invariant. In addi-
tion, distribution of length of loops in the bipartite
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Figure 1: Cumulative frequency distribution of DBEs.
The left and right figures are for N2 and N3, respec-
tively.

graph is not changed, so the decoding performance over
the memoryless channels of the BF and the SP decod-
ing algorithms influenced by short loops, would also be
unchanged.
Definition 4 (The Permuted G (P)). For a given
code constructed by the method G (P), LDPC codes
given by the permuted G (P) is obtained by permut-
ing columns of their parity-check matrix to have large
minimum value of DBE. 2

3.3. Cumulative frequency distribution of DBE

Figure 1 shows cumulative frequency distribution
of DBEs of the (Ni, 4, 3), i = 2, 3, LDPC codes con-
structed by the method G and P, and the permuted G
and P, where N2 = 104 and N3 = 105, respectively.
We can see from the figure that the cumulative fre-
quency distribution of the method G differed from those
of other methods. It is because that all of DBEs of the
first submatrix of the method G are fixed to 1.

4. Some burst-error correcting capability at the
first iteration

In this section, we will show some burst error cor-
recting capability of the LDPC codes, assuming the BF
and the SP decoding algorithms. In order to correct at
the first iteration, an estimated sequence ĉ(1) must be
satisfied one of the following conditions:

S-A) yn 6= cn and ĉ
(1)
n = cn.

S-B) yn = cn and ĉ
(1)
n = cn.

4.1. The assumptions

We assume that a codeword c is disturbed by a
burst error of length b. We also assume that the
(N,wr, wc), wr > wc > 1, LDPC codes have no loops
of length four, since at the first iteration of decoding
procedures have not been affected by loops of length
greater than four. When we consider burst error cor-
recting capability of the LDPC codes by the BF and
the SP decoding algorithms at the first iteration re-
spectively, we should give some more detailed defini-

H = 1

1

1

1

1

1

n n
(n,ik+1)
k+1 n

(n,ik+2)
k+2 n

(n,ik+3)
k+3

ik+1

ik+2

ik+3

n
(n,ik+3)
k+3 − n(n,ik+1)

k+1 + 1
Uncorrectable burst error of length

Figure 2: An example of uncorrectable burst error for
yn by the BF decoding algorithm when wc = 3.

tion about the DBEs. Let A(1)(n) be the index sets of
column of the parity check matrix H defined as

A(1)(n) , A(m′) \ {n} = {n(n,ij)
j },

j = [1, ν], m′, ij ∈ B(n),

where n(n,i1)
1 < n

(n,i2)
2 < · · · < n

(n,iν)
ν and ν , (wr −

1)wc. The nth estimated symbol at first iteration ĉ
(1)
n

depends on received symbols yn′ , n′ ∈ A(1)(n).
Lemma 1. The BF and the SP decoding algorithms
can correct yn which is in error, after the first iter-
ation when odd number of errors have occurred at
m′ ∈ B(n)th parity-check equations. 2

4.2. Burst-error correcting capability at the
first iteration by the BF decoding algorithm

Lemma 2. The BF decoding algorithm cannot correct
at the first iteration when even number of errors have
occurred in at least one parity-check equations. 2

From lemma 2, it is clear that the DBEs may have
large value to correct long burst errors. From lemmas
1, 2, the condition S-A) is satisfied for n ∈ [1, N ] if and
only if lemma 1 is satisfied.
Lemma 3. The burst error correctable length of the BF
decoding algorithm at the first iteration (BECL-BF1)
at symbol n denoted by d

(1)
min,n satisfies the following

equations:

d
(1)
min,n = min

k∈[0,ν−wc]
ik+1 6=ik+2 6=···ik+wc

{
n

(n,ik+wc )
k+wc

− n(n,ik+1)
k+1

}
. (9)

And the BECL-BF1 denoted by D(1)
min satisfies the fol-

lowing equations:

D
(1)
min = min

{
min

n∈[1,N ]

{
d

(1)
min,n

}
, Dmin

}
. (10)

Proof. Consider that wc received symbols of positions
n

(n,ik+1)
k+1 , n

(n,ik+2)
k+2 , . . . , n

(n,ik+wc )
k+wc

, k = [0, ν − wc], such
that ik+1 6= ik+2 6= · · · 6= ik+wc are in errors, then
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condition S-B) is not satisfied. So, burst error of length
n

(n,ik+wc )
k+wc

−n(n,ik+1)
k+1 +1 which has occurred at positions

n
(n,ik+1)
k+1 , n

(n,ik+2)
k+2 , . . . , n

(n,ik+wc )
k+wc

cannot be corrected at
the first iteration. So, equation (9) has been derived.

The equation (10) follows from the lemma 2. If a
burst error of length b > Dmin has occurred, then at
least one parity check equations may have even number
of errors which cannot be corrected at the first itera-
tion. From equation (9), BECL-BF1 corresponds to the
smaller value of minimum value of d(1)

min,n, ∀n ∈ [1, N ],
and Dmin.

Figure 2 shows an example of uncorrectable burst
error pattern when wc = 3. Here, ik+1, ik+2, ik+3 rep-
resent the positions of row and n, n

(n,ik+1)
k+1 , n

(n,ik+2)
k+2 ,

n
(n,ik+3)
k+3 represent the positions of column. A burst er-

ror of length n(n,ik+3)
k+3 −n(n,ik+1)

k+1 +1 which has occurred

at positions n(n,ik+1)
k+1 , n

(n,ik+1)
k+1 + 1, . . . , n(n,ik+3)

k+3 cannot
be corrected at the first iteration, since nth estimated
symbol ĉ(1)

n would be ĉ(1)
n 6= yn.

Theorem 1. The (N,wr, wc) LDPC codes without
loops of length four can correct a burst error of length
b ≤ D

(1)
min by the BF decoding algorithm at the first

iteration. 2

4.3. Burst-error correcting capability at the
first iteration by the SP decoding algorithm

Analysis of the SP decoding algorithm is more com-
plicated than that of the BF decoding algorithm, since
the SP decoding algorithm is a soft-input soft-output
decoding algorithm. Lemma 2 is not always satisfied
when wc takes large value. In that case (e.g. wr = 5,
wc = 4, and pave ≤ 0.0611861), the SP decoding al-
gorithm can correct errors at the first iteration when
even number of errors have occurred in a parity-check
equation. However, the LDPC codes with large wc do
not have better decoding performance in both the de-
coding error rate and its computational complexity, so
we do not consider it to simplify the problem. As is the
case of the BF decoding algorithm, from lemma 1 and
the above mentioned argument, we only consider the
condition that the yn is not in error and the estimated
sequence at position n at first iteration of the decoding
algorithm is in error, again.
Lemma 4. The burst error correctable length of the SP
decoding algorithm at the first iteration (BECL-SP1)
at symbol n denoted by s

(1)
min,n satisfies the following

equations:

s
(1)
min,n = min

k∈[0,ν−wc+x]
ik+1 6=ik+2 6=···ik+wc−x

{
n

(n,ik+wc−x)
k+wc−x − n(n,ik+1)

k+1

}
. (11)

And the BECL-SP1 denoted by S
(1)
min satisfies the fol-

lowing equations:

S
(1)
min = min

{
min

n∈[1,N ]

{
s

(1)
min,n

}
, Dmin

}
, (12)

where x is a threshold value.

Proof. Consider that wc − x recieved symbols of po-
sitions n(n,ik+1)

k+1 , n
(n,ik+2)
k+2 , . . . , n

(n,ik+wc−x)
k+wc−x , k ∈ [0, ν −

wc + x], such that ik+1 6= ik+2 6= · · · 6= ik+wc−x are
in errors, then condition S-B) is satisfied, where x is a
threshold value (it is explained in appendix in detail).
So, burst error of length n

(n,ik+wc−x)
k+wc−x − n

(n,ik+1)
k+1 + 1

which has occurred at positions n(n,ik+1)
k+1 , n

(n,ik+2)
k+2 , . . . ,

n
(n,ik+wc−x)
k+wc−x cannot be corrected at the first iteration.

Therefore, equation (11) holds.
The equation (12) follows from the lemma 2. If

burst error of length b > Smin has occurred, then
at least one parity check equations may have even
number of errors which cannot be corrected at the
first iteration. From equation (11), BECL-SP1 corre-
sponds to the smaller value of minimum value of s(1)

min,n,

∀n ∈ [1, N ], and Dmin.

Theorem 2. The (N,wr, wc) LDPC codes without
loops of length four can correct a burst error of length
b ≤ B

(1)
min by the SP decoding algorithm at the first

iteration. 2

5. Results of simulation and discussion

We will show by simulations that LDPC codes with
small minimum value of DBEs are inferior to those with
large minimum value of DBEs in error performance
over the MM-BSC.

5.1. Conditions

5.1.1. Construction method

We assume (Ni, wr, wc), i = 1, 2, 3, LDPC codes
with N1 = 103, N2 = 104, N3 = 105. For each i, we
compared (Ni, wr, wc) LDPC codes constructed by the
method G and P with that by the permuted G and
P. We generated three parity-check matrices by the
method G and P. Moreover, we constructed column
permuted parity-check matrices (by the proposed mod-
ification method) from above constructed LDPC codes
to have large minimum value of DBE.

5.1.2. Decoding algorithms

We used the BF and the SP decoding algorithms.
In the case of BF decoding algorithm, we used (Ni, 4, 3)
LDPC codes with i = 2, 3, and in the case of SP decod-
ing algorithm, (Ni, 4, 3) LDPC codes with i = 1, 2. The
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Figure 3: Simulation results by the BF decoding al-
gorithm at pave=0.07. Points showed “table 1” and
“table 2” in Fig. 3 correspond to those shown in table
1 and table 2, respectively.

Table 1: The MER and SER of the method G.
l First Second Third SER
1 5.33E-02 4.96E-02 4.96E-02 4.65E-02
2 3.45E-02 4.38E-02 4.39E-02 3.64E-02
3 2.96E-02 3.33E-02 3.33E-02 3.11E-02
98 3.31E-04 5.11E-04 5.15E-04 6.15E-04
99 3.32E-04 5.14E-04 5.04E-04 6.13E-04
100 3.26E-04 5.09E-04 5.05E-04 6.08E-04

simulations of the BF (SP) decoding algorithm contin-
ued until 2 × 104 (105) codewords were transmitted
or numbers of uncorrected codewords reached 50. We
used the average of error probability of the MM-BSC
for the SP decoding algorithm. The maximum number
of iterations was fixed to 100 for both decoding algo-
rithms.

5.1.3. MM-BSC

We assumed the MM-BSC with |S| = 2. Average
of error probability of the MM-BSC is pave = 0.07 for
the BF decoding algorithm and pave = 0.15 for the
SP decoding algorithm. We set the error probability
at each state as PS1 = 0, PS2 = 0.5, and changed
transition probabilities p(S2|S1), p(S1|S2) with keeping
pave constant.

5.2. Results of simulation

Figure 3 and 4 show results of simulation by the
BF and the SP decoding algorithm. The horizontal
axis represents p(S1|S2)−1, the average of recurrence
time at state S2, and the vertical axis represents symbol
error rate (SER). The leftmost plotted points in both

Figure 4: Simulation results by the SP decoding algo-
rithm at pave=0.15.

Table 2: The MER and SER of the permuted G.
l First Second Third SER
1 5.40E-02 5.40E-02 5.40E-02 3.73E-02
2 3.87E-02 3.87E-02 3.88E-02 2.93E-02
3 2.55E-02 2.55E-02 2.55E-02 2.16E-02
98 7.45E-06 7.50E-06 7.21E-06 8.62E-06
99 7.27E-06 7.60E-06 7.29E-06 8.81E-06
100 7.48E-06 7.54E-06 7.43E-06 8.64E-06

figures satisfy p(S1|S2) + p(S2|S1) = 1 where the MM-
BSC does not have memory, and hence, is equivalent to
the BSC. So decoding performance of the LDPC codes
constructed by four methods were all identical. For the
plotted points except for the leftmost points, the MM-
BSC has memory. If p(S1|S2)−1 becomes larger, it has
longer memory.

Table 1 and 2 show the message error rate (MER)
as error rate of messages r(l)

mn of the first, the second,
and the third submatrices of (N2, 4, 3) LDPC codes
constructed by the method G and the permuted G when
p(S1|S2)−1 = 23 by the BF decoding algorithm, respec-
tively. The first column of each tables shows the num-
ber of iteration denoted by l. The second, the third,
and the fourth columns show the MERs per iterations
of each submatrices and the fifth column shows SERs
per iterations.

5.3. Discussions

We see that performance of the LDPC codes con-
structed by the method G are inferior to codes con-
structed by the other methods, including the permuted
G. It can be concluded from figure 1 that only the
method G differed from the other methods. In fig-
ure 3, the SER of all the methods except the method
G at 21 ≤ p(S1|S2)−1 ≤ 24 when N = N2 and at
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21 ≤ p(S1|S2)−1 ≤ 27 when N = N3, were almost
same and constant. This means that the MM-BSC at
this range can be regarded as BSC.

In section 4, we have derived burst error correcting
capability at the first iteration for both decoding al-
gorithms which depend on the DBEs. Recall that the
DBEs of a first submatrix of the method G, H(1)

G are
all 1, so the even number of errors have been likely oc-
curred in a parity check equation. From lemma 2, it
cannot be corrected at the first iteration by the BF de-
coding algorithm. From table 1, the MER of the first
submatrix of the method G differed from those of the
other submatrices. However, from table 2, the MERs
of all the submatrices of the permuted G were almost
identical to each other. And the SERs per iteration of
the method G were inferior to those of the permuted G.

The threshold value takes x = 0 when wc = 3 and
pave = 0.07, so the SP decoding algorithm cannot also
correct at the first iteration. We have confirmed that
the SERs per numbers of the iteration of the method
G at figure 3 and 4 were also inferior to those of the
other methods.

6. Conclusion and remarks

For the MM-BSC, we have proposed a new mod-
ification method of LDPC codes to have large values
of DBE. We have derived the burst error correctable
length of the LPDC codes by the BF and the SP decod-
ing algorithms at the first iteration, respectively. Then
we show by some results of simulation that proposed
method have robustness in error performance over the
MM-BSC, assuming iterative decoding algorithms.

As further works, the derivations of the burst er-
ror correctable length of iterations greater than one
are needed. We also need to derive the burst error
correctable length when two or more burst errors are
occurred in one codeword. Moreover, analysis for the
code with stopping sets [2] should be considered.

Acknowledgments

One of the authors, Gou Hosoya, would like to thank
Dr. M. Kobayashi for his precious comments.

Appendix : Derivation of a threshold value x

Consider that a transmitted symbol c = 0 and its re-
ceived symbol y = 0 (the corresponding LLR takes
λ , Pr(y|c)

Pr(y|c⊕1) > 0), then its estimated symbol at first
iteration of the SP decoding algorithm denoted by ĉ(1),
is given by the following equation:

ĉ(1) =
{

0, if λ+ (wc − e)α− eα ≥ 0;
1, otherwise, (13)

where α be the log extrinsic value ratio (LER) which
is denoted by

α , 2 tanh−1

((
tanh

(
2−1λ

))wr−1
)
,

and e is the number of LER taking value −α. So, we
must derive the threshold value x which is given by

λ+ (wc − x)α− xα ≥ 0, wc ≥ x, x ≥ 0, (14)
The equation (14) indicates that wc − x check nodes
have sent messages (which are correspond to α) whose
sign is the same as that of λ. It also indicates that x
check nodes have sent messages (which are correspond
to −α) whose sign is different from that of λ. After
manuscripting the equation (14), we get

x =
{

0, if
⌊
λ+wcα

2α

⌋ ≤ 0;⌊
λ+wcα

2α

⌋
, otherwise.

(15)

The same argument is also valid when c = 1, y = 1, if
Pr(c = 0) = Pr(c = 1) = 0.5 is assumed. 2
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