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Abstract— The reliability-based heuristic search methods
for maximum likelihood decoding (MLD) generate test error
patterns (or, equivalently, candidate codewords) according
to their heuristic values. Test error patterns are stored in
lists and its space complexity is crucially large for MLD of
long block codes. One of the well-known heuristic search
methods for MLD is the A? decoding algorithm proposed
by Han et al. Based on the decoding algorithms both by
Battail and Fang (and its improved technique by Valembois
and Fossorier) and by the present authors, we deduce a new
method for reducing the space complexity of the A? decoding
algorithm. Simulation results show the high efficiency of the
proposed method.

Keywords— maximum likelihood decoding, binary block
codes, heuristic search, most reliable basis, reliability

1 Introduction

In this paper, we consider the priority-first search-
type MLD algorithms where candidate codewords are
generated in increasing value of the heuristic function.
To the authors’ knowledge, G. Battail and J. Fang first
proposed a priority-first search method for MLD where
a simple evaluation function is employed [1] (we will
call this method the BF decoding algorithm). One of
the most well-known priority-first search methods for
MLD is the A? decoding algorithm proposed by Han et
al. [2]. Recently, A. Valembois and M. Fossorier have in-
dicated that a slight modification makes the BF decod-
ing algorithm equivalent to the A? decoding algorithm
[6, 7]. Subsequently, Valembois et al. [6] and the present
authors [8] have proposed techniques for drastically re-
ducing the space complexity of modified BF decoding
algorithms employing some class of heuristic (or evalu-
ation) functions. However, their techniques cannot be
straightforwardly used for reducing the space complex-
ity of the A? decoding algorithm in which the search is
guided by more sophisticated heuristic functions than
that considered in [6, 8].

In this paper, based on the Valembois’ indication
and the techniques in [8], we propose a method for re-
ducing the space complexity of the A? decoding algo-
rithm. Consequently, we show theoretically that the
space complexity for the proposed decoding algorithm
is less than that for the A? decoding algorithm, and
by computer simulations that the former is significantly
reduced.
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2 Reliability-based MLD Algorithm
Let C be a binary linear (n, k, d) block code of the

code length n, the number of information symbols k
and the minimum distance d. We denote a generator
matrix of C by G and the weight profile of C by W (C).
We assume any codewords c = (c1, c2, . . . , cn) ∈ {0, 1}n
of C are transmitted over the Additive White Gaussian
Noise (AWGN) channel. The receiver maps a received
sequence r = (r1, r2, . . . , rn) ∈ Rn into a sequence
θ = (θ1, θ2, . . . , θn), θj = ln P (rj |cj=0)

P (rj |cj=1) , where P (rj |cj)
represents the likelihood of the symbol cj . Furthermore,
a hard-decision sequence z = (z1, z2, . . . , zn) ∈ {0, 1}n
is obtained by setting zj = 0 if θj ≥ 0 and zj = 1 other-
wise. The soft-decision decoder estimates the transmit-
ted codeword from θ and z.

In reliability-based decoding algorithms, we use the
column-permuted systematic generator matrix G̃ where
the leftmost k positions are the most reliable and lin-
early independent (MRI) [2, 5, 6, 7] in non-increasing
value of reliability. Let θ̃ = (θ̃1, θ̃2, . . . , θ̃n) and z̃ =
(z̃1, z̃2, . . . , z̃n) be permuted sequences of θ and z, re-
spectively, in the same ordering of columns of G̃. Let
C̃ be the code whose codewords are generated by G̃.
Define u = (u1, u2, . . . , uk) ∈ {0, 1}k as the leftmost k
symbols of z̃, i.e., uj = z̃j , 1 ≤ ∀j ≤ k. The decoder first
encodes u by G̃ to obtain the initial codeword c̃∅(=uG̃).
Afterwards, k dimensional vectors, called test error pat-
terns t ∈{0, 1}k, are iteratively generated and encoded
by G̃. Then, c̃ = c̃∅ ⊕ tG̃ is a candidate codeword and
this procedure is repeated until a sufficient condition for
the ML codeword is satisfied1.

Definition 1 For a location set J ⊆ [1, k], the test er-
ror pattern (TEP) t(J) =

(
t1(J), t2(J), . . . , tk(J)

)
has

element one in J . Such J is called the support of t(J).
Define that b(J) be the rightmost position in J , i.e.,
b(J) = max J . For j > b(J), the TEP t(J ∪ {j}) (or
simply t(J ∪ j)) is called an extended pattern of t(J).
For j > b(J) and J ′ = J \ b(J), the TEP t(J ′ ∪ j) is
called an adjacent pattern of t(J) in j. 2

For a binary vector v = (v1, v2, . . . , vn) ∈ {0, 1}n,
we define the correlation discrepancy [6, 7] of v as

L(v) =
∑

j|vj 6=z̃j
|θ̃j |. (1)

It is well-known that c̃best is the ML codeword if and
only if L(c̃best) = minc̃∈C̃ L(c̃).

1⊕ represents Exclusive OR operation.



3 Priority-first Search Method of Test

Error Patterns
The A? decoding algorithm [2] searches the ML code-

word through the trellis or the binary tree of the code.
Valembois and Fossorier have indicated that the mod-
ified BF algorithm and the A? decoding algorithm are
equivalent when both algorithms use the same heuris-
tic function. In this section, we state the A? decoding
algorithm from the Valembois’ perspective [6].

We first address the heuristic function of the search.
For c̃ref ∈ C̃ and t = (t1, t2, . . . , tk), we define

T
(
t, c̃ref

)
=
{
v
∣∣ vj = uj ⊕ tj for j ∈ [1, k],

and dH(v, c̃ref) ∈W (C̃)
}
, (2)

where dH(·, ·) denotes the Hamming distance. Then the
heuristic function considered in [2] is defined as

f(t, c̃ref) = min
v∈T (t,c̃ref)

{
L(v)

}
. (3)

The A? decoding algorithm generates t in increasing
value of f(t, c̃ref). Such c̃ref is called the referenced
codeword [3, 6] or the seed [2, 5].

The A? decoding algorithm performs the priority-
first search with not only the function f but any heuris-
tic functions F satisfying the following condition: for
j 6∈ J ,

(C1) F
(
t(J)

) ≤ F (t(J ∪ j)). (4)

It is guaranteed that the A? decoding algorithm finds
the most likely codeword if

F
(
t(J)

) ≤ L(c̃J), (5)

where c̃J = c̃∅ ⊕ t(J)G̃.
Hereafter, we describe how to perform the priority-

first search of TEPs using the heuristic function sat-
isfying (C1). Let M (1),M (2), . . . ,M (k) be k lists of
TEPs. The TEP t(J) is supposed to be inM (b(J)) where
b(J) = max J . In a list M (j),∀j ∈ [1, k], TEPs are or-
dered in increasing value of a heuristic function F .

By the condition (C1), the TEPs with the minimum
value of F in M (j), j ∈ [1, k], is t(j) whose Hamming
weight are one. Therefore, we just need to set the initial
lists asM (j) =

{
t(j)

}
for j ∈ [1, k]. Then, the algorithm

searches the TEP with the minimum value of F (we will
call this pattern the best pattern) among the set of those
that have not been found.

We here describe the A? decoding algorithm which
is equivalent to the BF algorithm with a slight modifi-
cation.

[The A? decoding algorithm]

S1) Set c̃∅ := uG̃, c̃best := c̃∅ and L := L(c̃∅). Con-
struct the initial lists of TEPs.

S2) Choose the best pattern t(J) ∈ M (b(J)) among the
topmost TEPs in non-empty listsM (j). If F (t(J)) ≥
L, then output c̃best and halt the algorithm.

S3) Generate the next candidate codeword by c̃J :=
c̃∅ ⊕ t(J)G̃. If L(c̃J) < L, then set L := L(c̃J) and
c̃best := c̃J .

S4) For all lists M (j) such that j > b(J), insert the
extended patterns t(J ∪ j) at the position such that
the list remains increasing order. Delete t(J) from
M (b(J)).

S5) If M (j) = ∅ for all j ∈ [1, k], then output c̃best and
halt the algorithm. Otherwise, go to S2). 2

In S4), we need to sort the extended pattern so that
the list M (j) remains increasing order of the heuristic
values. By sorting, the priority-first search of the A?

decoding algorithm is maintained [6].
In the original A? decoding algorithm, the only one

list of TEPs is used. If we combine the k lists into the
united list and order test patterns increasing order of the
heuristic values in it, then the above algorithm becomes
identical to the original A? decoding algorithm although
the behaviors of the two algorithms seem different.

We here describe the complexity of the A? decod-
ing algorithm. In a decoding procedure of a received
sequence r, the space complexity is O(k×M(r)) where
M(r) represents the maximum number of TEPs stored
in lists. As for the time complexity, that for generating
TEPs is dominant as well as that for encoding them.

4 Proposed Decoding Algorithm
In this section, we propose a method for reducing

the list size of TEPs in the A? decoding algorithm which
dominates the space complexity.

We here define the following condition (C2) for a
heuristic function F .
Definition 2 Let S(0) be a certain subset of [1, k] and
S(1) be the complement of S(0). For J ⊆ [1, k], assume
j1, j2 6∈ J and j1 < j2. If j1, j2 ∈ S(α) with α ∈ {0, 1},
then a function F satisfies

(C2) F
(
t(J ∪ j1)

) ≥ F (t(J ∪ j2)
)
. (6)

We will call (6) the condition (C2). 2

For the function f , we show the following lemma.
Lemma 1 For a referenced codeword c̃ref ∈ C̃, let tref

be the TEP of c̃ref . Assuming that S(1) and S(0) be the
support of tref and its complement, respectively. Then
for t(J), the heuristic function f

(
t(J), c̃ref

)
satisfies the

condition (C2).
(Proof ) From (1) and (3), the heuristic function

f(t, c̃ref) of a TEP t = (t1, t2, . . . , tk) satisfies

f(t, c̃ref)=
k∑

j=1

tj |θ̃j |+ min
v∈T (t,c̃ref )

{ n∑

j=k+1

(z̃j ⊕ vj)|θ̃j |
}
.

(7)

Denote the second term of the r.h.s. of (7) by A(t, c̃ref).
Assuming that j1 < j2, and j1, j2 ∈ S(0), then TEPs

t(J ∪ j1) and t(J ∪ j2) have the same Hamming dis-
tance from tref . Therefore by (2), (3) and (7),

A
(
t(J ∪ j1), c̃ref

)
= A

(
t(J ∪ j2), c̃ref)

)
. (8)



Hence we have
f
(
t(J ∪ j1), c̃ref

)− f(t(J ∪ j2), c̃ref

)

=
∑

j∈J∪j1
|θ̃j | −

∑

j∈J∪j2
|θ̃j | = |θ̃j1 | − |θ̃j2 | ≥ 0.

This inequality shows the function f satisfies (C2) when
j1, j2 ∈ S(0). In the case that j1, j2 ∈ S(1), we can prove
the lemma similarly. 2

In the following, we consider heuristic functions that
satisfy both (C1) and (C2).

The strategy of the proposed method is like lazy
evaluation where any TEPs are not generated as long
as possible. This approach is similar to improved tech-
niques in [6, 8] where other heuristic functions are con-
sidered. We first consider k lists M (j) as in the A?

decoding algorithm of Sect. 3. Hereafter, we assume
S(0) = {i1, i2, . . . , is} and S(1) = {i′1, i′2, . . . , i′p}.

By the condition (C1), the best pattern in a list
M (j), j ∈ [1, k], is t(j) whose Hamming weight is one.
Furthermore, the best pattern among s TEPs t(j), j ∈
S(0), is t(is) by the condition (C2). Similarly, the best
pattern among p TEPs t(j), j ∈ S(1), is t(i′p). There-
fore, we may as well construct the initial lists as

M (j) =
{ {t(j)}, if j ∈ {is, i′p};
∅, otherwise. (9)

At S2) of the A? decoding algorithm, if t(J)∈M (b(J))

is chosen as the best pattern, k−b(J) extended patterns
of t(J) will be stored at S4). However, it is enough to
store only its extended patterns t(J ∪ is) and t(J ∪ i′p)
in the list M (is) and M (i′p), respectively. This is guar-
anteed by (C2), since F

(
t(J ∪ j)) ≥ F

(
t(J ∪ is)

)
for

∀j ∈ S(0) and F
(
t(J ∪ j))≥F (t(J ∪ i′p)

)
for ∀j ∈ S(1).

Following this modification, we need to determine
when to insert other extended patterns t(J ∪ j), j 6∈
{is, i′p}, into lists. Assume that a TEP t(J ∪ iq) such
that iq > b(J) and iq ∈ S(0) has been already stored
in the list M (iq). Since t(J ∪ j) such that j < iq and
j ∈ S(0) cannot be the best pattern, we may as well store
these extended patterns only after t(J ∪ iq) is chosen as
the best pattern at S2). If iq−1 > b(J), t(J ∪ iq−1) has
the smallest heuristic value among all adjacent patterns
of t(J ∪ iq) in S(0) from the condition (C2), i.e.,

F
(
t(J ∪ iq−1)

)
= min
j∈S(0)

{
F
(
(tJ ∪ j))

∣∣ b(J) < j < iq

}
.

(10)

Therefore, after t(J ∪ iq) is chosen as the best pattern
at S2), t(J ∪ iq−1) is inserted into the list M (iq−1). This
modification reduces the space complexity significantly.
We note that the next generated TEP t(J ∪ iq−1) and
F
(
t(J ∪ iq−1)

)
are easily calculated from the selected

pattern t(J ∪ iq) and F
(
t(J ∪ iq)

)
. Similar arguments

also hold when t(J ∪ i′q), i′q ∈ S(1), has been the best
pattern at S2).

We describe a proposed decoding algorithm employ-
ing the above method.

[The proposed decoding algorithm]

P1) Set c̃∅ := uG̃, c̃best := c̃∅ and L := L(c̃∅). Con-
struct the initial lists of TEPs by (9).

P2) Choose the best pattern t(J) ∈M (b(J)) among non-
empty lists. If F (t(J)) ≥ L, then output c̃best and
halt the algorithm.

P3) Generate the next candidate codeword by c̃J :=
c̃∅ ⊕ t(J)G̃. If L(c̃J) < L, then set L := L(c̃J) and
c̃best := c̃J .

P4) a) If b(J) = iq (i.e., b(J) ∈ S(0)) and the adjacent
pattern t(J ′ ∪ iq−1) exists where J ′ = J \ b(J),
then insert it into the list M (iq−1).

b) If b(J) = i′q (i.e., b(J) ∈ S(1)) and t(J ′ ∪ i′q−1)
exists where J ′ = J \ b(J), then insert it into
M (i′q−1).

c) If b(J) < is, then insert t(J ∪ is) into M (is). If
b(J) < i′p, then insert t(J ∪ i′p) into M (i′p). Delete
t(J) from M (b(J)).

P5) If M (j) = ∅ for all j ∈ [1, k], then output c̃best and
halt the algorithm. Otherwise, go to S2). 2

The step P4) corresponds to the above modification.
Note that we need to store at most three TEPs at P4),
while we need to store at most k− b(J) TEPs at S4) of
the A? decoding algorithm.

In terms of the time and space complexity of the pro-
posed decoding algorithm, we show the following theo-
rems.
Theorem 1 The proposed decoding algorithm per-
forms MLD. Then, the maximum list size of TEPs in
the proposed decoding algorithm is less than that in
the A? decoding algorithm, if both decoding algorithms
employ the same heuristic function satisfying (C1) and
(C2). 2

Theorem 2 The number of generated TEPs in the pro-
posed decoding algorithm is no more than that in the A?

decoding algorithm, if both decoding algorithms employ
the same heuristic function satisfying (C1) and (C2). 2

5 Simulation Results
In this section, we evaluate the effectiveness of the

proposed decoding algorithm by computer simulations.

5.1 Conditions of Simulations
For the binary (63,30,13) BCH code and the binary

(104,52,20) quadratic residue (QR) code, we perform
MLD by the A? decoding algorithm (we denote it by
“A?” in tables) and the proposed decoding algorithm
(we denote it by “Proposed” in tables). At each signal
to noise ratio (SNR) Eb/S0 [dB], both decoding algo-
rithms are carried out 10,000 times. In tables, we use
the following notations:
N(r) : the number of generated TEPs in decoding of

r
M(r) : the maximum list size in decoding of r
Ave : the average value among 10,000 decoding

Max : the maximum value among 10,000 decoding
We use the function f as the heuristic function in

both decoding algorithms. We assume that the weight



Table 1: The results of decoding for (63,30,13) BCH code

Eb/N0 [dB] A? Proposed

5.0 Ave N(r) 33.7 1.78

M(r) 1.19 0.176

Max M(r) 2064 437

4.0 Ave N(r) 93.6 21.9

M(r) 11.4 2.19

Max M(r) 9579 3272

3.0 Ave N(r) 583 225

M(r) 96.6 24.4

Max M(r) 14321 5103

2.0 Ave N(r) 2908 1305

M(r) 553 156

Max M(r) 70519 28005

profiles W (C) of these two codes are unknown and we
use their supersets W ′(C) = {0, d, d+1, · · · , n}.

We set the reference codeword as c̃ref = c̃best for
the calculation of (3). When a temporally best code-
word c̃best is newly obtained, the reference codeword is
updated. In this case, though we need to store TEPs
corresponding to old referenced codewords in memory
in the proposed decoding algorithm2, we need not store
its discrepancy which is the real number, while storing
TEPs needs their heuristic values.

5.2 Results and Discussion
We show the results of the (63,30,13) BCH code and

the (104,52,20) QR code in Tables 1 and 2, respectively.
By Table 1, the maximum list size MaxM(r) in the
proposed decoding algorithm is less than 2/5 of that in
the A? decoding algorithm at each SNR. Furthermore,
the average value of the maximum list size AveM(r) in
the proposed decoding algorithm is less than 1/3 of that
in the A? decoding algorithm. These results show that
the effectiveness of the proposed decoding algorithm.
By Table 2, the values MaxM(r) and AveM(r) in the
proposed decoding algorithm are less than 1/4 of those
in the A? decoding algorithm. Theses results indicate
the proposed method also works well for a longer code.

The number of generated TEPs N(r) is one of in-
dices to evaluate time complexity in heuristic search
MLD algorithms [2, 5, 6]. By Table 1 and 2, N(r) in the
proposed decoding algorithm are less than 2/5 of N(r)
in the A? decoding algorithm even at 3.0 [dB]. These
results demonstrate the proposed method reduces the
time complexity of the A? decoding algorithm as well
as the space complexity.

6 Conclusion and Future Works
In this paper, we propose a new priority-first heuris-

tic search method reducing the space complexity of the
A? decoding algorithm via the perspective of [6]. The
proposed decoding algorithm is guaranteed to perform

2Its space complexity may be fairly small since the number of

obtained referenced codewords is small. In our simulation, we

observed that the maximum number of updating referenced

codeword is only 24 among all simulations.

Table 2: The results of decoding for (104, 52, 20) QR code

Eb/N0 [dB] A?
Proposed

6.0 Ave N(r) 48.5 0.239

M(r) 0.248 0.0342

Max M(r) 187 32

5.0 Ave N(r) 82.4 5.79

M(r) 3.60 0.471

Max M(r) 4932 793

4.0 Ave N(r) 1237 357

M(r) 166 30.1

Max M(r) 462986 98620

3.0 Ave N(r) 33806 13010

M(r) 5461 1297

Max M(r) 11452864 2680552

MLD since the set of generated candidate codewords is
identical to that in the original A? decoding algorithm.
The proposed decoding algorithm reduces not only the
space complexity but the time one in the A? decoding
algorithm.

As future works, we need to develop a method for
heuristic search MLD algorithm with powerful heuristic
functions such as in [5].
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