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Abstract— We propose a new decoding algorithm of LDPC

codes over the binary erasure channel (BEC). The proposed

decoding algorithm is an iterative one which uses the sparse-

ness structure of the parity-check matrix of LDPC codes.

We show by simulation results that the proposed decoding

algorithm and the conventional decoding algorithm have a

trade-off between remaining erasure rate and complexity.
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1 Introduction

In recent years, Low-density parity-check (LDPC)
codes [3, 4, 8] have been widely studied. LDPC codes
with the iterative message-passing algorithm based on
belief propagation (BP) can be decoded in high perfor-
mance with low complexity [3, 3, 6, 7, 8]. The decoding
performance of LDPC codes by the iterative decoding
algorithm based on BP for the binary symmetric chan-
nel (BSC), and the binary input additive white Gaus-
sian noise channel (BIAWGNC) have been studied so
much assuming the code length is infinite using the
density-evolution analysis [1, 6, 7].

As for the case of the iterative decoding algorithm
of LDPC codes with finite code has not been studied
so much, because the existence of loops in codes which
degrades the decoding performance and makes difficult
to analyze. However, when a channel is the binary
erasure channel (BEC), analyzing the performance of
iterative decoding algorithm of LDPC codes with finite
code length has been studied using the stopping sets
weight distribution [5].

Maximum likelihood decoding (MLD) over the BEC
is utilized by the Gaussian elimination (GE) for arbi-
trary linear block codes of length N including LDPC
codes, but the decoding complexity is O(N3) and is
not practical. M. Luby, et al. have proposed the itera-
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tive decoding algorithm of LDPC codes over the BEC
[1]. The symbol erasure rate (SER) of this decoding
algorithm can be evaluated asymptotically by the re-
cursive calculation method [1] that is similar way to
the Gallager’s hard decision iterative decoding algo-
rithm over the BSC [3, 4]. The SER of this decoding
algorithm for LDPC codes over the BEC are very low,
but higher than MLD, and the decoding complexity is
O(N), which is efficient. However, this algorithm has
often stopped when erasures have occurred at stopping
sets [5].

In this paper, we propose a new decoding algorithm
of LDPC codes over the binary erasure channel (BEC).
The proposed decoding algorithm is an iterative one
which uses the sparseness structure of the parity-check
matrix of LDPC codes. We show by simulation re-
sults that the proposed decoding algorithm can attain
smaller SER than the conventional decoding algorithm,
although the former requires slightly larger complexity
than the latter for erasure probability larger than 0.3,
have a favorable trade-off between remaining erasure
rate and complexity.

2 Preliminaries

2.1 LDPC Codes

Let H = [Hmn], m ∈ [1,M ], n ∈ [1, N ], be a parity-
check matrix whose row and column lengths are M and
N , respectively, and c = (c1, c2, . . . , cN ) ∈ {0, 1}N be
a codeword of the LDPC code such that cHT = 0.
Let λi and ρi denote the fraction of ones of H which
are in columns and rows for weight i, respectively, and
λ(x) ,

∑∞
i=2 λix

i−1 and ρ(x) ,
∑∞
i=2 ρix

i−1 be a
degree distribution of row and column of ones in H,
respectively. LDPC codes are characterized by the
code length N and the degree distribution pair (DDP)(
(λ(x), ρ(x)

)
which are denoted by C(N,λ(x), ρ(x)

)
,

and the row length M is given by M = N
R 1
0 ρ(x)dxR 1
0 λ(x)dx

.
A parity-check matrix is represented by the bipartite

graph, which consists of two types of nodes called check
nodes indexed by position of rows, and symbol nodes



indexed by position of columns. A check node m and a
symbol node n are connected with an edge if and only
if Hmn = 1. A loop in the bipartite graph is a closed
path that starts from a symbol node and returns to the
same symbol node through edges without passing the
same edges more than once. A length of a loop is a
number of edges of the closed path.

2.2 MLD Algorithm Over the BEC

We assume a codeword c is transmitted through the
BEC and receives a sequence y = (y1, y2, . . . , yN ) ∈
{0, 1, ξ}N , where ξ denotes an erased symbol. Let ε be
an erasure probability of the BEC such that Pr(yn =
ξ | cn = a) = ε, Pr(yn = a | cn = a) = 1− ε, a ∈ {0, 1}.

Let N ∈ {1, N} be the index set of symbols. And
let E ∈ N and Ē ∈ N \ E be the index set of erased
symbols and known symbols, respectively. From the
definition of parity-check matrix, we can write

cHT = cEHT
E + cĒH

T
Ē = 0 (1)

where cE and HE are the subvector and submatrix of
c and H which consist of those columns indexed by E ,
respectively. Since cĒHT

Ē is known to a receiver and
from eq.(1),

cEHT
E = cĒH

T
Ē

= s′, (2)

where s′ = (s′1, s
′
2, . . . , s

′
M ) ∈ {0, 1}M is calculated by

cĒH
T
Ē . Therefore, MLD algorithm is solved the erased

(unknown) sequence cE from the simultaneous equa-
tions cĒHT

Ē = s′ by using the GE. Since c is a code-
word, cE has at least one solution and MLD can correct
a received sequence iff cE has a unique solution. If cE
has multiple solutions, then it cannot be corrected1,
which causes decoding failure.

3 Conventional Decoding Algorithm [1]

The conventional iterative decoding algorithm can
correct an erased symbol whenever its neighboring check
node has only one erased symbol. We assume that the
check node is labeled as ‘satisfied’ when its all neigh-
boring symbol nodes are known, and otherwise it is
‘unsatisfied’. The algorithm is following procedure:

[Conventional iterative decoding algorithm]

For all unsatisfied check nodes, do the following:

1This is a detected error. The receiver can know that it cannot

be corrected.

C1) If the values of all but one of the symbol nodes

connected to the check nodes are known, set the

erased symbol to the XOR operation of the other

symbol nodes and label that check node as ‘finished’.

If all the symbol nodes connected to the check node

are known, label the check node as ‘finished’. This

procedure is done sequentially.

C2) Continue C1) until all check nodes are labeled as

finished or decoding cannot continue further. 2

4 Proposed Decoding Algorithm
4.1 Problems of the Conventional Decoding Al-

gorithms
The conventional iterative decoding algorithm can-

not decode whenever there are no unlabeled check nodes
that have one erased symbol in its neighboring symbol
nodes.

On the other hand, MLD which is utilized by the
GE is the optimal, for arbitrary linear block codes
of length N including LDPC codes, but the decod-
ing complexity is O(N3) and is not practical. More-
over, when GE is applied to LDPC codes, sparseness
of its parity-check matrix which can be decoded with
low complexity by the iterative decoding algorithm, is
lost by the row operation of GE. Generally, the result-
ing check node which is obtained by adding two check
nodes (equations), has more symbols than the previous
check node only when they have the same symbols.

4.2 Proposed Decoding Method
Consider the cases when the conventional decoding

algorithm stops, there are two cases below: i) all check
nodes are labeled as finished, ii) all unsatisfied check
nodes have equal or greater than two erased symbols.
The proposed decoding algorithm continues the decod-
ing procedure after the case ii). At first, we choose un-
satisfied check node that has two erased symbols whose
positions are denoted by ε1, ε2 ∈ E . Next, we substitute
these check node to the other unsatisfied check nodes
that have erased symbol in position ε2 (or ε1). We
assume that the check node, that have two erased sym-
bols and is substituted, is labeled as ‘substituted’. This
substituted procedure does not make erased symbols of
resulting check node increased. Moreover, sometimes it
can reduce erased symbols of the resulting check node.
This procedure is continued until all erased symbols
are corrected or there are no unsatisfied check nodes
that have erased symbols greater than two and all un-



satisfied check nodes that have two erased symbols are
labeled as ‘substituted’. The proposed decoding algo-
rithm is following procedures:

[Proposed decoding algorithm]

For all unsatisfied and substituted check nodes, do

the following:

P1) Perform C1) and C2).

P2) If P1) cannot continue further, then label the un-

satisfied check node that have two erased symbols at

positions ε1, ε2 as ‘substituted’, and substitute that

check node to other check nodes that have erased

symbol at position ε2 (or ε1). This procedure is done

sequentially.

P3) If there is an unsatisfied check node that has one

erased symbol, label that check node as ‘finished’,

and this erased symbol is corrected. Next, substi-

tute this corrected symbol to the other ‘substituted’

and ‘unsatisfied’ check nodes. This procedure is done

sequentially.

P4) Continue P2) and P3) until all check nodes are

labeled as ‘finished’ or all unsatisfied check nodes

that have erased symbols greater than two and all

unsatisfied check nodes that have two erased symbols

are labeled as ‘substituted’. 2

5 Simulation Results

5.1 Conditions for Simulation

We construct codes C1 and C2 which are denoted by
C1
(
N1, λ1(x), ρ1(x)

)
, C2

(
N2, λ2(x), ρ2(x)

)
such that

N1 = 500, λ1(x) = x2, ρ1(x) = x5, (3)

N2 = 1000, λ2(x) = x2, ρ2(x) = x5. (4)

We compare the conventional iterative decoding al-
gorithm [1] (denoted by “Conv.”) with the proposed
decoding algorithm (denoted by “Prop.”). For each
decoding algorithm, at least 3×1010 symbols are trans-
mitted until 300 decoding erasures occur.

We evaluate them by (i) decoding performance (SER)
and (ii) decoding complexity (the number of binary op-
erations).

5.2 Simulation Results and Discussions

5.2.1 Decoding Results

Figs. 1 and 2 show SER of both decoding algo-
rithms for the code. From these figures, SER of “Prop.”

Figure 1: Simulation result of C1

Figure 2: Simulation result of C2

is lower than that of “Conv.”. This is because “Prop.”
continues decoding after “Conv.” fails to decode and
can decode much more erased symbols without decod-
ing to a wrong codeword. “Prop.” fails to decode when
all unsatisfied check nodes that have erased symbols
more than two. In the case of C1, SER of “Conv.” is
about 102 times larger than that of “Prop.” at ε = 0.3.
And this gap tends to smaller for ε larger than 0.3.

5.2.2 Decoding Complexity

Tables 1 and 2 show the average number (per iter-
ation) of binary operations required for both decoding
algorithms. From these tables, “Prop.” needs slightly
more operations than “Conv.” at smaller value of ε.
When ε takes larger value, “Prop.” needs much more
operations than “Conv.”. This is because “Conv.” fails
to decode after a few operations are done. But “Prop.”



Table 1: The average number of binary operations re-
quired for both decoding algorithms of code C1

ε “Conv.”(a) “Prop.”(b) (b)/(a)

0.3 940.56079 940.5612337 1.000000472
0.325 982.9811643 983.0354183 1.000055193
0.35 1022.858608 1024.936272 1.002031233
0.375 1043.50082 1080.029256 1.035005661
0.4 989.9892207 1197.759013 1.209870762

0.425 796.321766 1327.219206 1.666687088
0.45 473.1815157 1253.13128 2.648309874

Table 2: The average number of binary operations re-
quired for both decoding algorithms of code C2

ε “Conv.”(a) “Prop.”(b) (b)/(a)

0.35 2049.91816 2049.939081 1.000010206
0.375 2125.949063 2131.895305 1.002796982
0.4 2101.692417 2314.109714 1.10106964

0.425 1677.32257 2757.201832 1.643811322
0.45 908.989028 2691.852697 2.961369845
0.475 549.0381187 1824.04476 3.322255227

continues decoding after “Conv.” fails to decode, and
after at a cost of much operations, “Prop.” often fails
to decode. For ε < 0.3, “Prop.” attains smaller SER
than “Conv.” with almost the same complexity. This
is a disadvantage of the proposed decoding algorithm.

6 Concluding Remarks

We have proposed new iterative decoding algorithm
of LDPC codes over the BEC. The proposed decoding
algorithm substitutes the check nodes that have two
erased symbols to other check nodes. This procedure
does not significantly increase the average number of
operations required for decoding, since the parity-check
matrix of LDPC codes is sparse. From simulation re-
sults, SER of the proposed decoding algorithm is much
lower than that of the conventional decoding algorithm,
and they have a favorable trade-off between remaining
erasure rate and complexity.

For the further works, it should be needed to com-
pare the performance of the proposed decoding algo-
rithm with that proposed by H. P. Nik, et al. at first
[2]. Nik’s decoding algorithm often can decode much
more erased symbols than that the conventional iter-

ative decoding algorithm can, and its decoding com-
plexity is a little greater when the maximum number
of guesses is relatively small. But this algorithm has
a possibility of decoding to a wrong codeword due to
wrong guesses when HT

E is singular. Next, the per-
formance analysis of the proposed decoding algorithm
using stopping sets like a conventional iterative decod-
ing algorithm is needed. From simulation results, the
proposed decoding algorithm has a disadvantage that
its decoding complexity becomes larger than that of the
conventional decoding algorithm as ε increases. But it
would be overcome by using the early stopping criterion
to reduce the decoding complexity.
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