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Abstract  Orthogonal arrays have been used in the field of experimental design. Hedayat and Sloane showed the
relation between orthogonal arrays and error-correcting codes[1]. And they proposed some construction methods of
both linear and nonlinear orthogonal arrays from error-correcting codes. On the other hand, the paper{5] defined
unequal orthogonal arrays as new class. It showed that unequal orthogonal arrays are more applicable to experimental
design. Furthermore, it showed the relation between unequal orthogonal arrays and unequal error-correcting codes([3],
and proposed the construction method of unequal orthogonal arrays from unequal error-correcting codes. But or-
thogonal arrays from this construction method are all linear. In this paper, we clarify the relation between nonlinear
unequal orthogonal arrays and codes. And we propose one of construction methods of nonlinear unequal orthogonal

arrays from error-correcting codes.
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1 Introduction

Experimental design has been used in many fields, for
example in quality management. In experimental de-
sign, it is important to design experiments so that we
can estimate the effects of factors and their interactions
where the number of experiments is as few as possible.

In order to reduce the number of experiments, con-
structing orthogonal arrays is important[l]. Generally,
there are two classes of orthogonal arrays: one is lin-
ear orthogonal arrays, the other is nonlinear orthogonal
arrays. ’

Hedayat and Sloane showed the relation between or-
thogonal arrays and error-correcting codes. And they
proposed some construction methods of orthogonal ar-
rays from error-correcting codes[1]. According to their

result, its relation can be divided into two types: the -

first is the relation between linear orthogonal arrays and
linear codes, the second is the one between nonlinear or-
thogonal arrays and nonlinear codes. Furthermore, they
proposed some construction methods of orthogonal ar-
rays from linear and nonlinear error-correcting codes.
On the other hand, the paper[5] defined unequal or-
thogonal arrays as new class. From the point of view of
the definition, the class with which Hedayat and Slone
dealt is equal orthogonal arrays. It showed that unequal
orthogonal arrays could reduce the number of experi-
ments when we have knowledge about effects of inter-
actions in detail. Furthermore, it showed the relation
between unequal arrays and unequal error-correcting
codes(3], and proposed construction method of unequal
orthogonal arrays from unequal error-correcting codes.
But orthogonal arrays from this construction method

Table 1: OA(4,3,2,2)
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are all linear.

In this paper, we clarify the relation between nonlin-
ear unequal orthogonal arrays and codes. Furthermore,
we extend the construction method of linear unequal or-
thogonal arrays, and propose one of construction meth-
ods of nonlinear unequal orthogonal arrays.

2 Orthogonal Arrays

2.1 Orthogonal Arrays

Definition2.1:[1] An M x n array A with entries from

GF(s) is said to be an orthogonal array with s levels and
strength t if every M x t subarray of A contains each -
tuple based on GF(s) exactly same times as row. We
will denote such an array by OA(M . n,s,t).

Example2.1: The array in Table 1 is orthogonal array
with strength 2. It is an OA(4,3.2,2).

We consider only the case of s = 2.
An orthogonal array OA(M,n,2.1) is said to be lin-
ear 1if the rows of OA_(]\/I,n,'Z‘t) form a linear vector



space. If an orthogonal array OA(M,n.2.t) is linear,
OA(M.n.2,t) has a basis for the linear vector space.
This basis is given in the form of (log, M) x n matrix
called generator matrix.

Next, we show the case that we can reduce the num-
ber of experiments when an orthogonal array is applied
to an experimental design. Now we consider the case
that there is a response variable of interest. And there
are three factors F, F5 and F3 that might affect the re-
sponse variable. Where each F; has level F; 0 and level
F;1(: = 1,2,3). Then we examine how changes in the
levels of the factors affect the response variable. For ex-
ample, this case is the following case. There is a ratio
of defective products as a response variable. And there
are three factors that might affect the response variable;
the type of catalyst, machine, and material. Where each
factor has two levels; catalyst0 and catalystl, machine0
and machinel ,and material0. and.materiall, Then we
examine how changes in the levels of the factors affect
the response variable.

In the above case, we can estlmate all the main effects

and all the interaction .effects of .two. factors with the
following experimental design:

This experimental design is made using the orthogonal
array OA(4,3,2.2) we show in Table 1. Where, each
row of the OA(4,3,2,2) corresponds to the vectors in
Eq.(2). For example, 000 which is the first row of the
0A(4,3,2,2) correspond to (Fy 0F20F3,0). Then we can
reduce the number of experiments using the design that
is Eq.(2).

As the above case, when we have knowledge of in-
teraction effects, we can reduce the number of exper-
iments using an orthogonal array. Generally, when an
orthogonal array OA(M, n, 2,1) is applied to experimen-
tal design, the number of experiments is M, and we can
estimate interaction effects of at most [£] factors.

Next we describe a necessary and sufficient condition
for an array to be an orthogonal array. .

Theorem 2.1:[1] An M x n array A with 0,1 entries is
an OA(M,n,2,t) if and only if

> (%=,

U=rowofA

for all 0,1 vectors v containing w 1’s, for all w in the
| _ N range 1 < w < t, where the sum is over all rows u of A.

] (F1,0F2,0F3)) -
\E, (Fy; onnFs 1)
wi” (Fi,0F2,1F3 o)‘ . A
il (FroF2 1 Fap) (1) 2.2 Orthogonal Arrays From Codes
L 4‘]:[ (F1,1F2,0F30) ) .
S (F11F20Fs,) 2.2.1 Linear Orthogonal Arrays from Linear
i (F1,1F2,1 F30) Codes :
(F1,1F2,1F3,1) Let w(u) be the Hamming weight of a vector u =

Where the main effect of the factor F} is measurements
which represent how change in the levels of the factor F;
affects the response variable, and the 1nteractlon effect
of the factors F; and Fj is measurements which repre-
sent_how changes in the level combmat\ons of the fac-
tors F; and Fj affect the response vanable Generally,
an interaction effect of k factors is measurements which
represent how changes in the level combinations of the
k factors affect a response variable. And each vector
of Eq.(1) corresponds to one time of experiments. For
example, (Fyq, Fa 0, F3,0) correspond to the experiment
whose level combination is Fy,q, F2,0, F3,0. This experi-
mental design contains all level combinations as the vec-
tors. The design such as Eq.(1) is said to be complete
design. : ‘

Further, -we suppose that we know that there is no
interaction effect of two factors by experiences. Then
we can estimate all the main effect of factors with the
following experimental design:

Fy oF50F3,0)
FioFs1F31) (2)
Fi11Fy0F3,1)
Fy1Fy1F39)
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(uy,u2,...,u,). An error-correcting code or simply
code is any collection C of vectors in GF(s)". The vec-
tors in C are called codewords. Let dist(u,v) be the
Hamming distance between two vectors u,v. We define
the minimal distance d of a code C to be the minimal
distance between distinct codewords:

d= min
u,VeC, U£V

dist(u,v).

If C contains M codewords, then we say that it is a code
of length n, size M and minimal distance d over GF(s)
or simply (n M, d),;code. We consider the case of s = 2
as orthogonal arrays.

C is said to be linear if C is a linear vector subspace.
If C is linear, C has the dual code Ct. Let d* be the
minimal distance of C*+. Then d* is said to be.a dual
distance of C.

Theorem?2.2:[1] If C is a (n, M, d)s linear code over
{0,1) with dual distance d* then the codewords of C
form the rows of an OA(M,n,2,d* — 1) with entries
from {0,1}.
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2.2.2 Nonlinear Orthogonal Arrays from Non-
linear Codes

The Group Algebra

we are going to describe binary vectors of length n by
polynomials in 23, 24,...,2,. For example, 100...0 will
be represented by 2z, 1010...0 by z,z3 and so on. In
general v = v1vy ... v, is represented by 2]7z;% ... 2",
which we abbreviate z¥. We make the convention that
z? = 1 for all i. This makes the set of all z¥ into a
multiplicative group denoted by G. Thus {0,1}" and G
are isomorphic groups, with addition in {0, 1}"

v+w = (v],vs,...,0n) + (w1, wa, ..., wy)

= (uni+vi,us+va,...,uy +1vy),

corresponding to multiplication in G:

vy V32 Yn

2¥z¥ = 2"z -2 Plzy? e 2l = zvtw,

n ‘%1 29

Definition2.2:[2] The group algebra QG of G over the
rational numbers @ consists of all formal sums

Z apz® ay € Q,2z% € G.
ve{o,1}n

Addition and multiplication of elements of QG are de-
fined in the natural way by

Z apz® + Z byz? = Z (aw + bp)=z?,

ve{o,1}" ve{o,1}n ve{0,1}»
r Z apz® = Z rapz®,r € Q,
ve{o,1}n ve{o,1}n
and
z apz? - Z bwz? =" Z aypbwz®.
ve{o,1}n ve{0,1}" v, we{0,1}"

To each u € {0, 1}, we associate the mapping y from
G to the rational numbers given by

xu(z?)=(-1)*"",

where u « v is the scalar product of the vectors u, v over
Q. xu is called a character of G. xq, is extended to act
on QG by linearity.

xul ). awzV)= Y av‘Xu(Z"‘)

ve{o,1}" ve{0,1}"

= T (1) ey,

ve{o,1}n

Let

1= e,

ve{o0,1}n

be an arbitrary element of the group algebra QG with
the property that

M= Z Cv#O.

ve{o,1}n

We call the (n + 1)-tuple {Ao, A1,...,Apn}, where

Ai= Z Cy,

w(v)=i

the weight distribution of ~.

Definition2.3:{2] The transform of <y is the element ¥+
of QG given by
1
1 _ u
=1 > xuly)z®.

ue{0,1}»

Nonlinear Orthogonal Arrays from Codes
Now let C be a linear or nonlinear (n, M, d)2code. C
is described by the element

Y= ="
vec
of QG. Let 6 = ;7% and §* is the transform of 5. The
weight distribution of § is {Bg,Bi....,B}}, where

Bf=— Y xuld).

w(w)=1i

Definition2.4:[2] The dual distance d* of a code C is
defined by B = 0forl<i<d* —1,BL #0,fCis
linear, d* is the minimum distance of Ct.

Theorem2.3:[1][2] If C is a (n, M, d)> code over {0,1)}
with dual distance d* then the codewords of C form the
rows of an OA(M, n,2,d* — 1) with entries from {0,1}.

3 Unequal Orthogonal Arrays

3.1 Unequal Orthogonal Arrays

Definition3.1: An M x n array A with 0,1 entries is
sald to be an unequal orthogonal array with 2 levels and
strength 7 = (rq,7ra,...,7r,) if every M x r; subarray of
A, which contain ith column of A, contains each r;-tuple
based on {0, 1} exactly. same times as row. We will de-
note such an array by OA(M.n,2,7).

When OA(M,n.2,(ry,75....7,)) is applied to experi-
mental design, we can estimate the effects of interac-
tions of at most[5] factors which contains ith factor. It
was shown that there are cases that unequal array re-
duce more numbers of experiments than equal orthogo-
nal arrays[5].



For example, this case is the following case. Here, Let
F; x Fj be the interaction of F; and F;. We suppose that
there are three factors F, Fy and F3. And we know that
there are F) x F5 and Fy x F3. When an equal orthogonal
array OA(M,;,3.2,4) is used, we can estimate not only
Fy x Fy, F} x F3 but Fy x F3, although we need not

estimate F; X F3. On the other hand, when an unequal -

orthogonal array OA(M,,3,2,(4,2,2)) is used, we can
not estimate Fy X F3. Therefore unequal orthogonal
array reduce the number of experiments.

Next we describe a necessary -and sufficient condition
for an array to be an unequal orthogonal array.
Theorem 3.1: An M x n array A with’ 0 1 entrles is
an OA(M,n,2,(ry,72,...,r,)) if and only if

U=rowofA

for all 0,1 vectors v = (v, va, ..., ¥, )'éﬁch' that'vi# 0
and w(v) = w for all win the range: 1< <, whele
the sum is over all rows u of A.” AR

3.2 Unequal Orthogonal Arrays from
~ Code

3.2.1 Linear Unequal 01 thogonal Arrays from
Codes

Linear Unequal Orthogonal Arrays from Codes
The separation (d,ds, ..
fined by .f o ,.'i‘ C

B

d; = min{dist(u,v) | u = (u1,u3,...,un),

v = (v1,v2,...,tn), 8,0 € C,u; # v.}“ .
for i=1 2,,.. B TR

Let (di.d%,...,d}) be the separation of Cl:';lVI]iCh is

the dual code of C. Then (di,dy,....d%) is said to be
a dual separation of C. ‘

Theorem3.2: If Cisa (n, M, d)slinear code over {0,1}

with dual separation- (df,ds,...,d~), then the code-

words of C form the row of an OA(M, n,2, (df —1,d5 —
.,d+ — 1)) with entries from {0,1}.

The Construction Method

Now we show the construction method of orthogonal
array. This construction method is the method that
is applied the construction method of unequal error-
~correcting code[3] to.

The ' Construction Method1: Let thereé be
two generator matrix of orthogounal arrays; Gy is
the generator matrix of a linear orthogonal array
OA(M,.n1,2,t1), and Gy is the one of a linear orthog-
onal arrayO A(AM. n2.2,15), where t, < t;. Let G and
Gy be joined as submatrices of G where Gy and G»

-y dn ) of linear code C is de-

n

Figure 1: The construction method of linear orthogonal
array

overlap, as shown in Figure 1. The orthogonal array for
which G is generator matrix is (M1 M3) x (ny +n3 —ngr)
array, Let ngp <iy/2. )

Theorem3.3: The orthogonal arrays for which
G is generator matrix is OA(M{Ma,ny + ny —
nor, 2, (r1,72,...75)). Where

7'iztl (i:1a21~-'1nl_n0L))

>ty (i=m+1,n+2,...,n1+n2+noL),
>t +ta—nor (i=ny—ngr+1,...m).

4 Nonlinear Unequal Orthogonal
Arrays
Nonlinear Unequal Orthogonal Arrays from

Codes .
Let C be a linear or nonlinear (n, M, d)scode and

7= Zz”.

veC
Let § = ,72 and 6% is the transform of.§. Now
(B, By, .., Biy,), fori=1,2,... nis defined by

1
Biy=5 2 xuld)

M uisow(u)=;

Definition4.1: The dual separation (di,ds,...,d+) of
a code C is defined by

B =0, for1<j<df —
n#0.

If C is linear, (d{,dy,...,dy) is the separation of C'*.

Theorem4.1: 1f C is a (n,M,d); code ovel
{0,1}  with  dual  separation  (di,d5,...d%)
then the codewords of C form the rows of ar
OA(M . n.s. (df — 1,dy —1.....d}+ — 1)) with entrie:
from {0, 1}. ‘

Proof: Since the dual separation of C i

\




(di,dy,...d5).

1
w #0,w(U)=j
= 0, for1<j<dif—-1. (3)
Also,
6) = xul(r?) = wxu(n)? > 0. ()
Xu = Xu M’} —MXu‘Y Z V.
Therefore,

xu(8) =0, for u such that u; # 0, w(u) = j.

by Eq.(3), (4)-
w(u) =j

Therefore, for u such that u; # 0,

xuly) = Xu(zzv)

vec

S (-np* ¥ =o.

VeC

By theorem 2.1, the array of codeword of C forms an
orthogonal array of strength (di,dy, ... dy). O

The Construction Method

The Construction Method2: Let there be two or-
thogonal arrays; C, is OA(Mi1,n,,2,1;) and C; is
OA(M,,n2,2,15), where {5 < ;. Let C} be the set
of the rows of C; and Cy be the set of the rows of Cs.
Let

C = {(cia,c1,2,---,Clni—ngr+1 T €21,
.o 1cl,n1 + C2'ngL b c2,noL+11 trc c2,n3) |
forV{ci1,¢1,2,:..,¢1,n,) € Cu,
V(02,1y02,21 (EER] C?.,n;) € 02}-
The orthogonal array whose rows are formed by the

vectors in C is (M Ms) x (ny + na — nor) array. Let
nor < tg/?..

Theorem4.2: The orthogonal arrays whose rows are

formed by the vectors in C is OA(M1 Mz, ny + nay —

nor, 2, (r1,72,.-.,n)), wWhere
T,'Ztl (i:l,Q,...:'nl—ngL), (5)
?"{Ztg (i:n1+1,n1+‘2,...,n1+n2—ngL),(6)
ri >t + 1y = noL (i:nl—nOL-l-l,...nl). [7)

Proof: Now, let M = MMy, n=mn; +ng — nop.

y=3.2"= ) w27,

vEC ve{0,1}»
- 1,
0= —%
M
and !
1 u
6" = i Z \u(d)z
ue{o,1}™

And, Let

C; = {(a1,11a1,2)"‘)al,n1)07‘ ")0) € {0‘ l}n
|¥(ai,1,a1,2,---:81,n,) € C1},

C’Z = {(0, e ,002,1,(12'2, cee, ag'ne) € {0, 1}"
|¥(az1,a29,..-,82n,) € Ca},

"M = Z zv:‘YQ = Z z'v,

veC) veCl,
and,
1 , 1
by = —2 .8y = —n2.
B AL R VAL

Then, we can describe

Y=7" X 72,
1 1
§=—9t= —— 2§ 0.
v =ML (7 X 72) 1 X 62
Moreover,
1
BN —_ i , u
o= Y xul)= e
une{0,1}»
= —— 3 xulbx &)zt
MM, ue{0,1}"
1
= MM Z xu(61)xu(d2)z"
! 2ue{0,1}"

3 (Milm(,al))(M%Xu(az))z". (9)

ue{0,1}"
By Eq. (8) and (9),
Lxuld) = (rxu6))(5xu(E)
ar Xul®) = g Xl xuioe)).
Therefore, for 1 <1< n,1<j<n,
1
L (&
By = 37 > xu(9)
u;#0,w(U)=J ] .
=T () xu(®),
(g, Xw Oy, Xulo
ui?’:ogw(ujzj . ) )
For 1 < i< n;—ngr,

Bifj =0, forl S“]‘ < t, ‘

-since yu (d,) = 0, for u such that u; # 0, w(u) = j.

For ny <i<mny+ny—noL,
B =0, for1<j<ts,

since xu (62) = 0, for u such that u; # 0, w(u) = j.
For ny — nor +1 <4 < ny, ‘

B =0, for 1< j<ti+1ts—noL.
since xu(81) = 0, or, xu(d2) = 0. for » such that wu; +

0. w(u) =j.
Hence by theoremd.1, Eq.(5),(6),(7) hold. 0



5 Discussion

In this section, we will show one of examples of nonlinear
unequal orthogonal array constructed by the construc-
tion method2. And it will be compared to the linear
unequal orthogonal array constructed by the construc-
tion methodl, and the optimal equal orthogonal array
[1, Table 12.1] .

Let A; be the orthogonal array which is constructed
from OA(24,12,2,3), OA(4,3,2,2)[1 Table 12.1] using
the construciton method2. 0OA(24,12,2,3) is a nonlin-
ear orthogonal array. Therefore -A; is a nonlinear un-
equal orthogonal array. Then A; is the 96 x 14 array.
And the strength of A; is (r1,7a,...,114), where

>3 (i=1,2,...,11),

And let A, be the orthogonal array which is
constructed from 0A(32,13,2,3), OA(4,3,2,2)[1 Ta-
ble 12.1] using the construction methodl. Both
0A(32,13.2,3) and OA(4,3,2,2) are linear orthogonal
arrays. Therefore A, is linear unequal orthogonal array.
Then A, is the 128 x 15 array. And the strength of A,
is (s1,82,...,5815), where ‘

ri Z 3 (i:'l,‘Qg...,].‘Z), -
r; > 2 (i =14,15),
>4 (i=13).

And let A3 be the orthogonal array OA(128, 14,2, 4)
(1, Table 12.1). Aj is optimal equal orthogonal array.

First, we compare A; with A;. The number of row of
A\ is fewer than the one of A;. Therefore A; can reduce
more number of experiments than A, when the number
of factors is 14. I ‘

Next, we compare A; with A3 . The number of row
of A; is fewer than the one of A3. Therefore A; can
reduce more number of experiments than Az when there
are partial intersections.

And although A, is unequal and A3 is equal , the num-
ber of experiments of A, is same as the one of A3. But
the number of experiments of A; is fewer than Ay, Aj.

Hence, it has been shown that there are good orthog-
onal arrays in orthogonal arrays constructed by the con-
struction method?2.

6 Conclusion

In this paper, we clarify the relation between nonlinear
unequal orthogonal arrays and error-correcting codes.
Furthermore, we extend the construction method of lin-
ear unequal orthogonal arrays, and propose one of con-
struction methods of nonlinear unequal orthogonal ar-
rays. And we show that there are good orthogonal ar-
rays in orthogonal array constructed by the proposed
construction method. '
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