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A Heuristic Search Method with the Reduced List of Test Error
Patterns for Maximum Likelihood Decoding∗

Hideki YAGI†,††a), Student Member, Toshiyasu MATSUSHIMA†, Member, and Shigeichi HIRASAWA†, Fellow

SUMMARY The reliability-based heuristic search methods for maxi-
mum likelihood decoding (MLD) generate test error patterns (or, equiva-
lently, candidate codewords) according to their heuristic values. Test error
patterns are stored in lists and its space complexity is crucially large for
MLD of long block codes. Based on the decoding algorithms both of Bat-
tail and Fang and of its generalized version suggested by Valembois and
Fossorier, we propose a new method for reducing the space complexity of
the heuristic search methods for MLD including the well-known decoding
algorithm of Han et al. If the heuristic function satisfies a certain condition,
the proposed method guarantees to reduce the space complexity of both the
Battail-Fang and Han et al. decoding algorithms. Simulation results show
the high efficiency of the proposed method.
key words: maximum likelihood decoding, binary block codes, heuristic
search, most reliable basis, reliability

1. Introduction

Maximum likelihood decoding (MLD) of block codes min-
imizes the probability of decoding error when we assume
that each codeword has the equal probability to be trans-
mitted. Since the complexity of searching the most likely
codeword is significantly large, many researchers have de-
voted to develop efficient algorithms for MLD of long block
codes. One of the most efficient MLD algorithms is the
reliability-based decoding algorithm that uses the column
permuted generator matrix in non-increasing order of relia-
bility.

In general, the reliability-based decoding algorithms
are divided into two types due to the generation rule of
candidate codewords. The first type of them generates the
candidate codewords according to a predetermined genera-
tion rule [4], [5], [10]. The latter one is called the heuris-
tic search MLD algorithms where candidate codewords are
generated in increasing value of the heuristic function (also
called the evaluation function) [1]–[3], [6]–[9]. Test error
patterns (information sequences corresponding to candidate
codewords) are generated and stored in lists before they are
tested to be the most likely codeword. In this paper, we
will consider the latter one. As known to the authors, G.
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Battail and J. Fang first proposed a heuristic search method
for MLD over the additive white Gaussian noise (AWGN)
channel [1] (we will call this method the BF decoding algo-
rithm). Recently, in [8], [9], A. Valembois and M. Fossorier
have indicated that a generalized version of the BF decod-
ing algorithm is equivalent to the well-known A� decoding
algorithm proposed by Y.S. Han et al. [2]. The generalized
BF (GBF) decoding algorithm is a prominent and effective
algorithm which can deal with almost all heuristic functions
ever proposed.

For heuristic search MLD algorithms, their memory
management is the critical issue since the maximum list
size of test error patterns (TEPs), which dominates the space
complexity, becomes quite large as the signal to noise ratio
(SNR) of the channel decreases. There are roughly three ap-
proaches to reduce the maximum list size of TEPs in heuris-
tic search MLD algorithms: (i) Some studies have proposed
effective heuristic functions of TEPs to early terminate de-
coding procedure before the list of TEPs becomes very large
[6], [7]. (ii) Some studies have proposed techniques for re-
ducing the maximum list size of TEPs employing conven-
tional heuristic functions [8]. (iii) Some studies have dis-
carded the optimality of decoding while the complexity of
decoding is drastically reduced [3].

Valembois et al. have taken the second approach. They
have proposed a technique which considerably reduces the
maximum list size of TEPs of the original BF decoding algo-
rithm which imposes some condition for heuristic functions
[8]. However, their technique cannot be adopted to the GBF
decoding algorithm in which the search is guided by more
effective heuristic functions than that considered in [1].

In this paper, we also consider the second approach
and propose a method for reducing the maximum list size
of TEPs of the GBF decoding algorithm. Similarly to the
Valembois’ approach, we first define a condition of heuris-
tic functions. We show that the defined condition is satis-
fied by most of well-known heuristic functions. Then, we
propose the improved method for the GBF decoding algo-
rithm when the heuristic function satisfies the defined condi-
tion. We also devise the adaptive procedure of the proposed
method where the heuristic function is updated as decoding
proceeds. Proposed methods guarantee to reduce the maxi-
mum list size of TEPs of the GBF decoding algorithm. The
number of TEPs generated and stored in lists are reduced
and so they also reduce the time complexity of the GBF de-
coding algorithm. We also show by computer simulations
that the space complexity of the GBF decoding (or equiva-
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lently, the A� decoding) algorithm is significantly reduced.
This paper is organized as follows. In Sect. 2, we

briefly review general reliability-based MLD algorithms. In
Sect. 3, we describe some heuristic functions and the GBF
decoding algorithm. In Sect. 4 and 5, we propose new meth-
ods for reducing the space complexity of the GBF decoding
algorithms. In Sect. 6, we show some simulation results and
finally we state the concluding remarks in Sect. 7.

2. Reliability-Based MLD Algorithm

Let C be a binary linear (n, k, d) block code of the code
length n, the number of information symbols k and the min-
imum distance d. We denote a generator matrix of C by
G and the weight profile of C by W(C). We assume any
codewords c = (c1, c2, . . . , cn) ∈ {0, 1}n of C are transmitted
over the AWGN channel. The receiver maps the received se-
quence r = (r1, r2, . . . , rn) ∈ Rn into the reliability sequence
θ = (θ1, θ2, . . . , θn), θ j = ln P(r j |c j=0)

P(r j |c j=1) , where P(r j|c j) repre-

sents the likelihood of the symbol† c j. Furthermore, the
hard-decision received sequence z = (z1, z2, . . . , zn) ∈ {0, 1}n
is obtained by setting z j = 0 if θ j ≥ 0 and z j = 1 otherwise.
The decoder estimates the transmitted codeword both from
θ and z.

In reliability-based decoding algorithms, we permute
columns of a generator matrix in non-increasing order of re-
liability so that the leftmost k positions are the most reliable
and linearly independent (MRI) [2], [6], [8], [9]. The other
columns outside the k MRI positions are also reordered
in non-increasing order of reliability, i.e., |θ j1 | ≥ |θ j2 | for
1 ≤ j1 < j2 ≤ k and for k+1 ≤ j1 < j2 ≤ n. We perform the
standard row operations with respect to the permuted ma-
trix to make the leftmost k columns the identity matrix. We
denote the resultant matrix by G̃.

Let θ̃ = (θ̃1, θ̃2, . . . , θ̃n) and z̃ = (z̃1, z̃2, . . . , z̃n) be per-
muted sequences of θ and z, respectively, in the same or-
dering of columns of G̃. Let C̃ be the code generated by
G̃ which is equivalent to C. Define u = (u1, u2, . . . , uk)
∈ {0, 1}k as the leftmost k symbols of z̃, i.e., uj = z̃ j,∀ j ∈
[1, k]. The decoder first encodes u by G̃ to obtain the ini-
tial codeword c̃∅(= uG̃). Afterwards, k-dimensional vectors,
called test error patterns t ∈ {0, 1}k, are iteratively generated
and encoded by G̃. Then, c̃ = c̃∅ ⊕ tG̃ is a candidate code-
word††. This procedure is repeated until a sufficient condi-
tion for the optimality is satisfied.

Definition 1: For a position set J ⊆ [1, k], the test error
pattern (TEP) t(J) =

(
t1, t2, . . . , tk

)
∈ {0, 1}k has element one

in J and element zero in the complement of J. Such J is
called the support of t(J). Define that µ(J) be the rightmost
position in J, i.e., µ(J) = max J. For j > µ(J), the TEP
t(J ∪ { j}) (or simply t(J ∪ j)) is called an extended pattern
of t(J). For any J, define Ja = J \ µ(J). For J and µ(Ja) <
j < µ(J), the TEP t(Ja ∪ j) is called an adjacent pattern of
t(J) in j. �

Example 1: Assuming k = 7 and J = {2, 5}, then the TEP

t(J) with the support J is t(J) = (0, 1, 0, 0, 1, 0, 0). Since
µ(J) = 5, there exist two extended patterns of t(J): t(J ∪ 6)
and t(J ∪ 7). We find Ja = {2} and there also exist two
adjacent patterns of t(J) in the position j = 3, 4: t(Ja ∪ 3) =
(0, 1, 1, 0, 0, 0, 0) and t(Ja ∪ 4) = (0, 1, 0, 1, 0, 0, 0). �

For a binary vector u = (v1, v2, . . . , vn) ∈ {0, 1}n, we
define the correlation discrepancy [8], [9] of u as

L(u) =
∑

j|z̃ j�v j

|θ̃ j|. (1)

It is well-known that c̃best is the most likely codeword if and
only if L(c̃best) = minc̃∈C̃ L(c̃) [8], [10].

3. The Generalized BF Decoding Algorithm

3.1 Heuristic Functions of the Search

The methods considered in this paper generate TEPs accord-
ing to their heuristic values (or heuristics). Here, we review
heuristic functions which are used for searching the most
likely codeword in [1]–[4], [8], [10].

Definition 2: For a TEP t(J), any function F
(
t(J)) satisfy-

ing

0 ≤ F
(
t(J)
)
≤ L(c̃J), (2)

where c̃J = (c̃J,1, c̃J,2, . . . , c̃J,n) = c̃∅ ⊕ t(J)G̃, is called the
heuristic function of the TEP. i.e., the heuristic value of t(J)
is a lower bound of the discrepancy of c̃J . �

For a TEP t(J), the most simple heuristic function may
be the correlation discrepancy over the k MRI positions de-
fined as

∆
(
t(J)
)
=
∑
j∈J

|θ̃ j|. (3)

The function ∆(·) actually satisfies Eq. (2), since L(c̃J) =
∆
(
t(J)
)
+
∑n

j=k+1(z̃ j⊕ c̃J, j)|θ̃ j|. This heuristic function is used
in [1], [4], [8], [10].

The heuristic function in [2], [3] utilizes the fact that
any codeword in C̃ is at a distance i ∈ W(C̃) from a given
codeword c̃ref ∈ C̃. For c̃ref ∈ C̃ and t = (t1, t2, . . . , tk), we
define†††

T
(
t, c̃ref

)
=

{
u = (u ⊕ t)||(vk+1, vk+2, . . . , vn)

∣∣∣∣
dH(u, c̃ref) ∈ W(C̃)

}
, (4)

where dH(·, ·) represents the Hamming distance. If we do
not know the exact weight profile W(C̃), which case is often
occurred for long block codes, then we can substitute it by
its superset. Then the heuristic function in [2], [3] is defined

†Since the probability of decision error of z j becomes smaller
as the value of |θ j| is larger, |θ j| is called reliability.
††The symbol ⊕ represents Exclusive OR operation.
†††The symbol || represents concatenation of vectors.
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as

f (t, c̃ref) =
∑
j| t j=1

|θ̃ j| + min
u∈T (t ,c̃ref )

{ ∑
j|z̃ j�v j

|θ̃ j|
}
. (5)

Such c̃ref is called the referenced codeword [4], [5], [8] or
the seed [2], [3], [6], [7].

We describe another heuristic function proposed by
Fossorier and Lin [5]. For c̃ref ∈ C̃ and t, we define

TF

(
t, c̃ref

)
=

{
u = (u ⊕ t)||(vk+1, vk+2, . . . , vn)

∣∣∣∣
dH(u, z̃) + dH(c̃ref , z̃) ∈ W′(C̃)

}
, (6)

where W′(C̃) = {0, d, d + 1, . . . , n} is the superset of the
weight profile W(C̃). Then the heuristic function in [5] is
expressed as

g
(
t, c̃ref

)
=
∑
j| t j=1

|θ̃ j|+ min
u∈TF (t ,c̃ref )

{∑
j|z̃ j�v j

|θ̃ j|
}
. (7)

Note that since

dH(u, z̃) = wH(t) + #{ j|z̃ j � v j}, (8)

the sequence u ∈ TF

(
t, c̃ref

)
which minimizes the second

term of r.h.s. of Eq. (7) is determined only by the Ham-
ming weight wH(t) [5], [9] where wH and #{·} represent the
Hamming weight and the cardinality, respectively. In [5],
Fossorier et al. have devised a method for making the func-
tion g(·) more effective according to updating the referenced
codeword. For details, see [5].

The heuristic function is also used for reducing the time
complexity of decoding procedure. Denote a currently best
candidate codeword by c̃∗. We note that if F

(
t(J)
)
≥ L(c̃∗)

for a TEP t(J), the candidate codeword c̃J cannot be the
most likely codeword because of Eq. (2). Hence, if all TEPs
not encoded so far satisfy F

(
t(J)
)
≥ L(c̃∗), then the suffi-

cient condition for the optimality holds and we can termi-
nate the decoding procedure. The tighter the lower bound
of L(c̃J) is, the more effective a sufficient condition for the
optimality is. Since f

(
t(J), c̃ref

)
≥ ∆
(
t(J)
)

for any t(J), f (·)
can give a tighter sufficient condition for the optimality than
∆(·).

3.2 Generation Method of TEPs

We state how to dynamically generate TEPs according to
their heuristic values. We will call the search strategies
which process TEPs in the increasing order of their heuristic
values the priority-first search [2], [3], [7].

The well-known MLD algorithm via the priority-first
search is the A� decoding algorithm [2] in which the search
is conducted by the A� algorithm through trellis or binary
tree of the code. Although the A� decoding algorithm em-
ploys the function f (·), it performs the priority-first search
with any heuristic functions F(·) satisfying the following
condition:

(C1) F
(
t(J)
)
≤ F
(
t(J ∪ j)

)
for j � J.

The heuristic functions ∆(·), f (·) and g(·) actually satisfy the
condition (C1) [9].

Other well-known MLD algorithm via the priority-first
search is the BF decoding algorithm [1] which requires
heuristic functions to satisfy not only the condition (C1) but
also the condition:

F
(
t(J)
)
≤ F
(
t(J′)
)

⇒ F
(
t(J ∪ j)

)
≤ F
(
t(J′ ∪ j)

)
for j � J ∪ J′. (9)

It is readily shown that the function ∆(·) satisfies Eq. (9)
while the functions f (·) and g(·) do not necessarily satisfy
it [8].

In [8], [9], Valembois et al. have shown that we can
easily generalize the BF decoding algorithm to perform
the priority-first search when the heuristic function satisfies
only the condition (C1).

Hereafter, we assume heuristic functions satisfy (C1)
and we will describe the GBF decoding algorithm. Let
M(1),M(2), . . . ,M(k) represent k lists of TEPs. The TEP t(J)
is supposed to be in M(µ(J)) where µ(J) = max J. Then the
list for storing any TEP is uniquely determined. In a list
M( j),∀ j ∈ [1, k], TEPs are ordered in increasing order of
their heuristic values. We call the TEP with the minimum
heuristic value among all TEPs in lists the best pattern. The
algorithm iteratively selects the best pattern, encodes it by G̃
and deletes it from lists. If there needs to generate new TEPs
which have been not processed yet, the algorithm generates
them. The basic strategy of generating TEPs is such that any
TEP t(J) is not generated while we know that better patterns
than t(J) are stored in lists or not generated so far.

In the initial stage of the algorithm, we construct the
initial list of TEPs as follows: By the condition (C1), the
TEPs with the minimum heuristic value in M( j), j ∈ [1, k], is
t( j) whose Hamming weight is one. i.e.,

t( j) = arg min
j=µ(J)

{
F
(
t(J)
)}

(10)

for all j ∈ [1, k]. Therefore, we just need to set the initial
lists as M( j) =

{
t( j)
}

for j ∈ [1, k]. Thereafter, the algorithm
selects the best patterns among TEPs that have not been pro-
cessed†.

We here describe the GBF decoding algorithm.

[The generalized BF decoding algorithm]

S1) Set c̃∅ := uG̃, c̃∗ := c̃∅ and L := L(c̃∅). Construct the
initial lists of TEPs.

S2) Select the best pattern t(J) ∈ M(µ(J)) among the top-
most TEPs in non-empty lists M( j). If F(t(J)) ≥ L, then
output c̃∗ and halt the algorithm.

†In [8], Valembois et al. have devised the technique for select-
ing the best pattern by O(log k�) comparisons.
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S3) Generate the next candidate codeword by c̃J := c̃∅ ⊕
t(J)G̃. If L(c̃J) < L, then set L := L(c̃J) and c̃∗ := c̃J .

S4) For all lists M( j) such that j > µ(J), insert the extended
patterns t(J ∪ j) at the position such that the list remains
increasing order of heuristic values. Delete t(J) from
M(µ(J)).

S5) If M( j) = ∅ for all j ∈ [1, k], then output c̃∗ and halt the
algorithm. Otherwise, go to S2). �

In the above algorithm, S4) is the step of generating
new TEPs which are extended patterns of t(J). We need
to sort the generated TEP t(J ∪ j) so that the list M( j) re-
mains increasing order of the heuristic values. By sorting,
the priority-first search is maintained.

The original BF decoding algorithm requires the
heuristic functions to satisfy Eq. (9) as well as (C1). There
we need not sort the new generated TEPs since Eq. (9) guar-
antees it is not better than any TEPs already stored in lists.

In the A� decoding algorithm, the only one list of TEPs
is used. If we combine the k lists into the united list and or-
der TEPs increasing order of heuristic values in it, then the
above algorithm becomes identical to the A� decoding al-
gorithm although the behaviors of the two algorithms seem
different [8], [9]. Note that the essential properties are inde-
pendent of the number of lists.

We here state the complexity of the GBF decoding
algorithm. As for the space complexity, storing G̃ re-
quires O(kn) binary arrays. Denoting the maximum list size
for decoding r by M(r), the space complexity for lists is
O(k × M(r)) binary arrays and O(M(r)) arrays of real num-
bers. Therefore the overall space complexity is O(γ) where
γ = max{kn, k × M(r)}. If the maximum list size M(r) is
larger than n (which situations are usual from low to medium
SNRs), the value M(r) is dominant in the space complexity.
It has been shown that the value M(r) drastically increases
as the SNR decreases.

As for the time complexity, permuting θ in the non-
increasing order of reliability costs O(n log n) comparisons
and constructing G̃ costs O(n × κ2) binary operations where
κ = min{k, n−k} [2], [4], [5]. These steps are carried out only
once in decoding of r. Contrary to the above steps, generat-
ing t(J) and encoding them by G̃ are carried out iteratively,
where each encoding requires O(kn) binary operations by
conventional encoding method [5], [6], [10]. For each TEP,
computing its heuristic value costs real number operations
of O(n). Since a large number of TEPs are generated, both
generating TEPs and the real number operations of heuris-
tic values dominate mainly the whole decoding complexity
[2], [6], [8] as well as encoding TEPs.

4. Proposed Decoding Algorithm

In this section, we propose a method for reducing the list
size of TEPs in the GBF decoding algorithm. Before de-
riving the proposed method, we show some properties of
conventional heuristic functions. These properties will be
exploited by the proposed method.

4.1 Some Properties of Heuristic Functions

We here define the following condition for a heuristic func-
tion F(·).

Definition 3: Let S (0) be a certain subset of [1, k] and S (1)

be the complement of S (0). For J ⊆ [1, k], assume j1, j2 � J
and j1 < j2. If j1, j2 ∈ S (α) with α ∈ {0, 1}, then a function
F(·) satisfies

(C2) F
(
t(J ∪ j1)

)
≥ F
(
t(J ∪ j2)

)
. (11)

We will call this condition the condition (C2). �

The following propositions play important roles in de-
riving the improved method.

Proposition 1: Assume that S (0) = [1, k]. Then the func-
tion ∆(·) satisfies the condition (C2).

(Proof ) Note that by Eq. (3), an extended pattern t(J ∪ j)
of t(J) such that j � J satisfies

∆
(
t(J ∪ j)

)
= ∆
(
t(J)
)
+ |θ̃ j|. (12)

If 1 ≤ j1 < j2 ≤ k and j2 � J, then we have

∆
(
t(J ∪ j1)

)
− ∆
(
t(J ∪ j2)

)
= ∆
(
t(J)
)
+ |θ̃ j1 | − ∆

(
t(J)
)
− |θ̃ j2 | ≥ 0 (13)

since |θ̃ j1 | ≥ |θ̃ j2 |. By the assumption, both j1 and j2 are in
S (0)(= [1, k]) and thus the function ∆(·) satisfies (C2). �

Proposition 2: For a given referenced codeword c̃ref ∈ C̃,
let tref be the TEP of c̃ref (i.e., c̃ref = c̃∅ ⊕ trefG̃). Assuming
that S (1) and S (0) be the support of tref and its complement,
respectively. Then the heuristic function f (·) satisfies the
condition (C2).

In order to prove Proposition 2, we first show the fol-
lowing lemma.

Lemma 1: Denote the second term of the r.h.s. of Eq. (5)
by A(t, c̃ref), i.e.,

A(t, c̃ref) = min
u∈T (t ,c̃ref )

{ ∑
j|z̃ j�v j

|θ̃ j|
}
. (14)

Then for a given c̃ref , any pairs (t, t′) such that dH(t, tref) =
dH(t′, tref) satisfy

A(t, c̃ref) = A(t′, c̃ref) (15)

i.e., the vector u which gives the minimum value of Eq. (14)
is determined only by the Hamming distance dH(t, tref).

(Proof ) By the definition, u ∈ T
(
t, c̃ref

)
satisfies

dH(u, c̃ref) = dH(t, tref) + #{ j| v j � c̃r, j} (16)

where c̃ref = (c̃r,1, c̃r,2, . . . , c̃r,n). In r.h.s., the first term ex-
presses the distance over the left k positions and the second
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term does the distance over the rest of n − k positions.
For t, if we assume that u = (u ⊕ t)||(v∗k+1, v

∗
k+2, . . . , v

∗
n)

minimizes the r.h.s. of Eq. (14), then u must satisfy
dH(u, c̃ref) ∈ W(C̃) from the condition in Eq. (4). Note that
we have

A(t, c̃ref) =
∑

j|v∗j�z̃ j

|θ̃ j|. (17)

For another TEP t′ such that dH(t′, tref) = dH(t, tref), the
vector u′ = (u ⊕ t′)||(v∗k+1, v

∗
k+2, . . . , v

∗
n) satisfies

dH(u′, c̃ref) = dH(u, c̃ref) ∈ W(C̃) (18)

by Eq. (16). This equation implies u′ ∈ T (t′, c̃ref) and

A(t′, c̃ref) =
∑

j|v∗j�z̃ j

|θ̃ j|. (19)

in which u′ minimizes the r.h.s. of Eq. (14). Equations (17)
and (19) complete the proof. �

(Proof of Proposition 2 ) Assuming that j1, j2 ∈ S (0)

and j1, j2 � J, then the Hamming distance between TEPs
t(J ∪ j1) and tref and that between t(J ∪ j2) and tref are the
same since S (0) is the complement of the support of tref . i.e.,

dH

(
t(J ∪ j1), tref

)
= dH

(
t(J ∪ j2), tref

)
. (20)

Therefore, we have

A
(
t(J ∪ j1), c̃ref

)
= A
(
t(J ∪ j2), c̃ref

)
(21)

from Lemma 1. Furthermore if j1 < j2, we have

f
(
t(J ∪ j1), c̃ref

)
− f
(
t(J ∪ j2), c̃ref

)
=
∑

j∈J∪ j1

|θ̃ j| −
∑

j∈J∪ j2

|θ̃ j| = |θ̃ j1 | − |θ̃ j2 | ≥ 0.

This inequality implies that the function f (·) satisfies (C2) if
j1, j2 ∈ S (0). In the case of j1, j2 ∈ S (1), Eq. (20) also holds
and we can prove the proposition similarly. �

Proposition 3: Assume that S (0) = [1, k]. Then for a given
c̃ref , the function g(·) satisfies the condition (C2).

(Proof ) Denote the second terms of r.h.s. of Eq. (7) by
B(t, c̃ref) for a given t. Recall that the vector u ∈ TF(t, c̃ref)
which takes the value B(t, c̃ref) is determined only by wH(t)
(see Sect. 3.1). i.e., arbitrary pairs (t, t′) with wH(t) =
wH(t′) satisfy

B(t, c̃ref) = B(t′, c̃ref). (22)

Since t(J ∪ j1) and t(J ∪ j2) with j1, j2 � J have the
same Hamming weight, if 1 ≤ j1 < j2 ≤ k, then

g
(
t(J ∪ j1)

)
− g
(
t(J ∪ j2)

)
= ∆
(
t(J ∪ j1)

)
− ∆
(
t(J ∪ j2)

)
≥ 0 (23)

where the last inequality is obtained from Eq. (13). By the

assumption, both j1 and j2 must be in S (0)(= [1, k]) and thus
the function g(·) satisfies (C2). �

Propositions 1, 2 and 3 show that the heuristic func-
tions ∆(·), f (·) and g(·) satisfy the condition (C2) as well
as (C1). In the following, we consider heuristic functions
satisfying both (C1) and (C2).

4.2 Improved Generation Method of TEPs

In this section, we propose an improved method for reducing
the list size of TEPs in the GBF decoding algorithm. For
our purpose, we utilize the condition (C2) as well as (C1)
to judge unnecessary TEPs and such unnecessary TEPs will
not be generated as long as possible. More precisely, we
regard a TEP t as unnecessary if it is clear that there is a
TEP t′ whose heuristic value is smaller than that of t in the
lists. In the improved method, such an unnecessary TEP t
is generated after the TEP t′ is chosen as the best pattern at
S2). This approach is similar to the improved technique for
the original BF decoding algorithm† [8].

We also arrange k lists M( j) as in the GBF decoding
algorithm. Hereafter, we denote S (0) = {i1, i2, . . . , is} with
s ≥ 1 and S (1) = {i′1, i

′
2, . . . , i

′
p} with p ≥ 0.

By the condition (C1), the TEP with the minimum
heuristic value in a list M( j), j ∈ [1, k], is t( j) whose Ham-
ming weight is one. Furthermore, we can see that the
best pattern among s TEPs t( j), j ∈ S (0), is t(is) by the
condition (C2). Similarly, the best pattern among p TEPs
t( j), j ∈ S (1), is t(i′p). Therefore, we can construct the initial
lists as

M( j) =

{ {
t( j)
}
, if j ∈ {is, i′p};

∅, otherwise.
(24)

Note that we generate at most two TEPs at this stage.
At S2) of the GBF decoding algorithm, if t(J)∈M(µ(J))

is selected as the best pattern, k − µ(J) extended patterns of
t(J) will be stored at S4). However, it is enough to store only
its extended patterns t(J ∪ is) and t(J ∪ i′p) in the list M(is)

and M(i′p), respectively. This is guaranteed by (C2), since

F
(
t(J ∪ j)

)
≥F
(
t(J ∪ is)

)
, for ∀ j ∈ S (0) (25)

F
(
t(J ∪ j)

)
≥F
(
t(J ∪ i′p)

)
, for ∀ j ∈ S (1) (26)

where t(J ∪ j) represents extended patterns of t(J).
Following this modification, we need to determine

when to insert other extended patterns t(J ∪ j), j � {is, i′p},
into lists. Consider that a TEP t(J ∪ iq) such that iq ∈ S (0)

and iq > µ(J) is stored in the list M(iq). Since adjacent pat-
terns t(J ∪ j) such that j ∈ S (0) and j < iq cannot be the
best pattern by (C2), we just need to store these adjacent
patterns after t(J ∪ iq) is selected as the best pattern at S2).
If iq−1 > µ(J), t(J ∪ iq−1) has the smallest heuristic value

†Note again that the original BF decoding algorithm requires
Eq. (9) for heuristic functions which is not satisfied by the function
f (·) and g(·).
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among all adjacent patterns of t(J ∪ iq) in S (0) from the con-
dition (C2), i.e.,

t(J ∪ iq−1) = arg min
j∈S (0)

{
F
(
t(J ∪ j)

)∣∣∣ j < iq, j � J
}
. (27)

Therefore, after t(J ∪ iq) is selected as the best pattern at
S2), only t(J ∪ iq−1) is inserted into the list M(iq−1). This
modification significantly reduces the maximum list size.
Similar arguments also hold when t(J ∪ i′q), i′q ∈ S (1), is se-
lected as the best pattern at S2).

We describe a proposed decoding algorithm employing
the above method.

[The proposed decoding algorithm]

P1) Set c̃∅ := uG̃, c̃∗ := c̃∅ and L := L(c̃∅). Construct the
initial lists of TEPs by Eq. (24).

P2) Select the best pattern t(J) ∈ M(µ(J)) among non-empty
lists. If F(t(J)) ≥ L, then output c̃∗ and halt the algo-
rithm.

P3) Generate the next candidate codeword by c̃J := c̃∅ ⊕
t(J)G̃. If L(c̃J) < L, then set L := L(c̃J) and c̃∗ := c̃J .

P4) a) If µ(J) = iq (i.e., µ(J) ∈ S (0)) and the adjacent pat-
tern t(Ja∪ iq−1) exists where Ja = J \µ(J), then insert
it into the list M(iq−1).

b) If µ(J) = i′q (i.e., µ(J) ∈ S (1)) and the adjacent
pattern t(Ja ∪ i′q−1) exists, then insert it into the list

M(i′q−1).
c) If µ(J) < is, then insert t(J ∪ is) into M(is). If µ(J) <

i′p, then insert t(J ∪ i′p) into M(i′p). Delete t(J) from
M(µ(J)).

P5) If M( j) = ∅ for all j ∈ [1, k], then output c̃∗ and halt the
algorithm. Otherwise, go to P2). �

The step P4) corresponds to the modification. Note that
we need to store at most three TEPs at P4), while we need
to store at most k − µ(J) TEPs at S4) of the GBF decoding
algorithm.

Remark that we set S (0) = [1, k] by Propositions 1 and 3
if we employ either the function ∆(·) or g(·). Since S (1) = ∅,
we can skip P4-b) and at most two TEPs (one is an adjacent
pattern and the other is an extended pattern) are generated
for each iteration (one iteration consists of selecting the best
pattern, encoding it and generating new TEPs).

Example 2: Assuming k = 7 and S (0) = {2, 4, 5}, let
t(J) = (1, 0, 0, 1, 0, 0, 0) be the best pattern selected at P2).
Since µ(J) = 4 ∈ S (0), the adjacent pattern t(Ja ∪ 2) =
(1, 1, 0, 0, 0, 0, 0) at the position j = 2 is inserted into the list
M(2) at P4-a). Since µ(J) < is = 5 and µ(J) < i′p = 7, ex-
tended patterns t(J ∪ 5) = (1, 1, 0, 0, 1, 0, 0) and t(J ∪ 7) =
(1, 1, 0, 0, 0, 0, 1) of t(J) are inserted into the lists M(5) and
M(7), respectively, at P4-c). �

We note that the next generated TEP t(Ja ∪ iq−1) at
P4-a) can be easily computed from the selected best pat-
tern t(J)(= t(Ja ∪ iq)). Furthermore its heuristic value
F
(
t(Ja ∪ iq−1)

)
may be easily calculated from that of t(J).

For example, if we adopt the function ∆(·), the heuristic val-
ues of t(Ja ∪ iq−1) is calculated as

∆
(
t(Ja ∪ iq−1)

)
= ∆
(
t(Ja ∪ iq)

)
− |θ̃iq | + |θ̃iq−1 |. (28)

Similarly, if we adopt the function f (·), the heuristic values
of t(Ja ∪ iq−1), iq−1 ∈ S (0), is calculated as

f
(
t(Ja ∪ iq−1), c̃ref

)
= f
(
t(Ja ∪ iq), c̃ref

)
− |θ̃iq | + |θ̃iq−1 | (29)

from Eq. (5) and Lemma 1. The heuristic value of t(Ja ∪
i′q−1), i′q−1 ∈ S (1), can also be calculated by that of t(Ja ∪
i′q), i′q ∈ S (1), since the similar relationship as Eq. (29) holds
between t(Ja ∪ i′q−1) and t(Ja ∪ i′q). As for the function g(·),
if two TEPs have the same Hamming weight, the values B(·)
of them take the same value. We can also calculate f (t(Ja ∪
iq−1), c̃ref) by the similar way of Eq. (29).

We show the validity of the proposed decoding algo-
rithm.

Theorem 1: Assume that a heuristic function F(·) satisfies
both (C1) and (C2). The ν-th iteration of the proposed de-
coding algorithm selects the TEP with the ν-th least heuris-
tic value among all TEPs. i.e., it performs the priority-first
search.

(Proof ) See Appendix A. �

The foregoing theorem also implies that the proposed
decoding algorithm performs MLD by Eq. (2).

Corollary 1: If we employ either ∆(·), f (·) or g(·) as the
heuristic function, the proposed decoding algorithm per-
forms the priority-first search and achieves MLD. �

In terms of the space complexity of the proposed de-
coding algorithm, we show a lemma and a theorem.

Lemma 2: In each iteration of the proposed decoding al-
gorithm, the list size of TEPs is no more than that in the GBF
decoding algorithm if both decoding algorithms employ the
same heuristic function satisfying (C1) and (C2).

(Proof ) From Theorem 1, both the GBF and the pro-
posed decoding algorithms perform the priority-first search.
Therefore, if we employ the same heuristic function, the
numbers of TEPs selected as the best pattern at S2) and S4)
(these numbers are equal to those of encoding TEPs) are
identical.

Based on the above fact, we will prove the lemma by
the mathematical induction. We denote the iteration number
by ν.
(i) The case of ν = 1:

The initial list constructed by Eq. (24) guarantees the list
size of the proposed decoding algorithm is less than that
in the GBF decoding algorithm.

(ii) The case of ν ≥ 2:
Assume that the list size in the (ν−1)-th iteration of the
proposed decoding algorithm is less than or equal to that
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of the GBF decoding algorithm. When t(J) is selected
as the best pattern in the ν-th iteration, all of its k − µ(J)
extended patterns will be stored in lists at the step S4) in
the GBF decoding algorithm, while at most two extended
patterns of t(J) will be stored in lists at P4) of the same
iteration in the proposed decoding algorithm. Further-
more, if proposed decoding algorithm needs to store the
adjacent pattern of t(J), such adjacent pattern has been
already stored in lists in the GBF decoding algorithm.
Therefore, the list size in the ν-th iteration of the proposed
decoding algorithm is less than or equal to that of the GBF
decoding algorithm.

From the arguments (i) and (ii), we can prove the lemma.
�

Theorem 2: The maximum list size of TEPs in the pro-
posed decoding algorithm is no more than that in the GBF
decoding algorithm if both decoding algorithms employ the
same heuristic function satisfying (C1) and (C2).

(Proof ) We can readily prove the theorem by Lemma 2.
�

We show the following theorem on the time complex-
ity. Note that the number of TEPs generated in a decoding
procedure is in general greater than the maximum list size
and it is one of the indices to evaluate the time complexity
of heuristic search MLD algorithms [2], [8].

Theorem 3: The number of generated TEPs in the pro-
posed decoding algorithm is no more than that in the GBF
decoding algorithm if both decoding algorithms employ the
same heuristic function satisfying (C1) and (C2).

(Proof ) We note again that if we employ the same heuris-
tic function, the numbers of encoding TEPs for both decod-
ing algorithms are identical. So both algorithms perform
priority-first search and the number of iterations in which a
sufficient condition for the optimality holds is the same. Fur-
thermore, the TEPs generated in the ν-th iteration of the pro-
posed decoding algorithm are obtained in the λ-th (λ ≤ ν)
iteration of the GBF decoding algorithm. These facts guar-
antee that the number of generated TEPs in the proposed
decoding algorithm is no more than that in the GBF decod-
ing algorithm. �

5. Adaptive Procedures

5.1 Method for Updating Referenced Codeword

Some of the heuristic functions such as the functions f (·)
and g(·) use a referenced codeword c̃ref . In this case, we
need not fix the referenced codeword throughout the decod-
ing procedure. We call the decoding procedure in which the
referenced codewords are updated the adaptive procedure
[2], [6].

In [2], [5], [6], the currently best codeword c̃∗ is set as

referenced codeword. When a new (currently) best code-
word c̃∗ is obtained, the referenced codeword is updated by
c̃ref = c̃∗. Note that we initially set c̃ref = c̃∅ in the first it-
eration since the first best codeword is necessarily c̃∅. Since
the number of TEPs stored in lists may be so large that we
do not recalculate their heuristic values even when a refer-
enced codeword is updated. If Eq. (2) holds for arbitrary pair
of c̃ref and t(J), the GBF decoding algorithm still achieves
MLD.

Let c̃ref denote the current referenced codeword in the
ν-th iteration and c̃′ref be the referenced codeword for the se-
lected best pattern t(J) at λ-th (λ ≤ ν) iteration. At S4) in the
ν-th iteration of the GBF decoding algorithm, the heuristic
value of t(J ∪ j), an extended pattern of t(J), is calculated
referring c̃ref . This c̃ref may differ from the referenced code-
word c̃′ref which is referenced by t(J).

Meanwhile, in the ν-th iteration of the proposed decod-
ing algorithm, we modify P4) as follows:

(a) When we obtain the adjacent pattern t(Ja ∪ iq−1) or
t(Ja ∪ i′q−1) in P4-a) or P4-b) where Ja = J \ µ(J), we
calculate their heuristic values using c̃′ref which is the
referenced codeword for the selected best pattern t(J).

(b) When we obtain the extended pattern t(J ∪ is) or t(J ∪
i′p) in P4-c), we calculate their heuristic values using
c̃ref which is the current referenced codeword.

Thus we need to store past referenced codewords c̃′ref
in memory by above (a). However the increased space com-
plexity may not be so large since the number of past refer-
enced codewords is not so great compared to the list size of
TEPs as we will see in the next section.

We have the following lemma on the proposed decod-
ing algorithm with the adaptive procedure.

Lemma 3: For any TEP t(J), its heuristic value calculated
in the proposed decoding algorithm is the same as that in
the GBF decoding algorithm when we adopt the adaptive
procedure.

(Proof ) See Appendix B. �

Lemma 3 implies that the search order in the GBF and
the proposed decoding algorithms with the adaptive proce-
dures are strictly identical and they carry out MLD. Lemma
3 leads to the following theorems which are the counterparts
of Theorems 2 and 3, respectively. The proofs are straight-
forward and hence we omit them.

Theorem 4: Assume that both the GBF and the proposed
decoding algorithms employ the same heuristic function sat-
isfying (C1) and (C2). Then the maximum list size of TEPs
in the proposed decoding algorithm is less than that in the
GBF decoding algorithm when they adopt the adaptive pro-
cedure.

Theorem 5: Assume that both the GBF and the proposed
decoding algorithms employ the same heuristic function sat-
isfying (C1) and (C2). Then the number of generated TEPs
in the proposed decoding algorithm is no more than that in



2728
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.10 OCTOBER 2005

the GBF decoding algorithm when they adopt the adaptive
procedure.

5.2 The Case of Specific Heuristic Functions

If we use the heuristic function f (·), we can reduce the in-
creased (time and space) complexity in the proposed de-
coding algorithm with the adaptive procedure (the increased
space complexity is required to store past referenced code-
words). For the TEP t(Ja ∪ iq−1) generated at P4-a), since
its referenced codeword c̃ref is the same as that for the se-
lected best pattern t(J)(= t(Ja ∪ iq)), its heuristic value can
be calculated by Eq. (29). To calculate r.h.s. of Eq. (29), we
just need to know the value f

(
t(J), c̃ref

)
and the position

iq−1 ∈ S (0) which is the adjacent to iq ∈ S (0). For this reason,
we need to store TEPs (not codewords themselves) corre-
sponding to old referenced codewords in memory. We call
these TEPs referenced TEPs. The similar argument holds
for the TEP t(Ja∪ i′q−1) generated at P4-b) where i′q−1 ∈ S (1).
We remark that the space complexity for storing referenced
TEPs are smaller than that for storing ordinary TEPs since
we need not store heuristic values of referenced TEPs.

If we use the heuristic function g(·), we can further save
the space complexity for storing the past referenced code-
word. As we see in Sect. 3.1, the value B(·) of a TEP defined
in Eq. (22) depends only on its Hamming weight. Therefore
even if the referenced codeword is updated in the adaptive
procedure, we need not hold the past referenced codewords
since we can calculate the heuristic value of the generated
adjacent pattern by its Hamming weight at P4-a). There is
no increased space complexity compared to the GBF decod-
ing algorithm.

6. Simulation Results

In this section, we evaluate the effectiveness of the proposed
decoding algorithm by computer simulations.

6.1 Conditions of Simulations

For the binary (63, 30, 13) BCH code and the binary (104,
52, 20) quadratic residue (QR) code, we perform MLD by
the GBF decoding algorithm (we denote it by “GBF” in ta-
bles) and the proposed decoding algorithm (we denote it by
“Proposed” in tables). At each SNR Eb/S 0 [dB], both de-
coding algorithms are carried out 10,000 times.

We adopt the function f (·) as the heuristic function in
both decoding algorithms. We remark again that this GBF
decoding algorithm is identical to the well-known A� de-
coding algorithm [2]. We assume that the weight profiles
W(C) of these two codes are unknown and we use their su-
persets W′(C) = {0, d, d+1, · · · , n}. We compare two versions
according to the way of arranging the referenced codeword:
(i) We fix the referenced codeword as c̃ref = c̃∅ and we set
S (0) = [1, k] and S (1) = ∅. So we can skip P4-b) of the
proposed decoding algorithm and the new extended pattern

which is generated at P4) is only one. (ii) We consider the
adaptive procedure in which the referenced codeword is ini-
tially set as c̃ref = c̃∅ and then updated as c̃ref = c̃∗ each time
a new (currently) best codeword is obtained.

In tables, we use the following notations:

N(r) : the number of generated TEPs in decoding of r
M(r) : the maximum list size in decoding of r
R(r) : the number of updating referenced codeword in

the proposed decoding algorithm
Ave : the average value among 10,000 times of decoding
Max : the maximum value among 10,000 times of de-

coding

6.2 Results and Discussion

(The results on the space complexity for algorithms fix-
ing c̃ref = c̃∅)

We show the results of decoding with fixed c̃ref = c̃∅
for the (63, 30, 13) BCH code and the (104, 52, 20) QR
code in Tables 1 and 2, respectively.

By Table 1, the maximum list size Max M(r) in the pro-
posed decoding algorithm is less than 1/3 of that in the GBF
decoding algorithm at each SNR. Furthermore, the average

Table 1 The results of decoding with fixed c̃ref = c̃∅ for (63, 30, 13)
BCH code.

Eb/N0 [dB] GBF Proposed

5.0 Ave N(r) 3.54 · 101 2.10
M(r) 1.46 1.92 · 10−1

Max M(r) 2.073 · 103 4.110 · 102

4.0 Ave N(r) 1.09 · 102 2.50 · 101

M(r) 1.40 · 101 2.28
Max M(r) 9.586 · 103 2.406 · 103

3.0 Ave N(r) 6.74 · 102 2.33 · 102

M(r) 1.13 · 102 2.31 · 101

Max M(r) 1.582 · 104 4.600 · 103

2.0 Ave N(r) 3.15 · 103 1.26 · 103

M(r) 5.82 · 102 1.36 · 102

Max M(r) 7.052 · 104 2.055 · 104

Table 2 The results of decoding with fixed c̃ref = c̃∅ for (104, 52, 20)
QR code.

Eb/N0 [dB] GBF Proposed

6.0 Ave N(r) 4.94 · 101 4.18 · 10−1

M(r) 3.68 · 10−1 3.26 · 10−2

Max M(r) 5.160 · 102 4.400 · 101

5.0 Ave N(r) 1.18 · 102 1.27 · 101

M(r) 7.46 7.65 · 10−1

Max M(r) 1.093 · 104 1.264 · 103

4.0 Ave N(r) 2.24 · 103 5.98 · 102

M(r) 2.89 · 102 4.68 · 101

Max M(r) 4.634 · 105 9.875 · 104

3.0 Ave N(r) 4.70 · 104 1.32 · 104

M(r) 7.38 · 103 1.16 · 103

Max M(r) 1.145 · 107 2.674 · 106
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Table 3 The results of decoding with adaptive procedure for (63, 30, 13)
BCH code.

Eb/N0 [dB] GBF Proposed

5.0 Ave N(r) 3.37 · 101 1.78
M(r) 1.19 1.76 · 10−1

Max M(r) 2.064 · 103 4.370 · 102

4.0 Ave N(r) 9.36 · 101 2.19 · 101

M(r) 1.14 · 101 2.19
Max M(r) 9.579 · 103 3.272 · 103

3.0 Ave N(r) 5.83 · 102 2.25 · 102

M(r) 9.66 · 101 2.44 · 101

Max M(r) 1.432 · 104 5.103 · 103

2.0 Ave N(r) 2.91 · 103 1.31 · 103

M(r) 5.53 · 102 1.56 · 102

Max M(r) 7.052 · 104 2.801 · 104

Table 4 The results of decoding with adaptive procedure for
(104, 52, 20) QR code.

Eb/N0 [dB] GBF Proposed

6.0 Ave N(r) 4.85 · 101 2.39 · 10−1

M(r) 2.48 · 10−1 3.42 · 10−2

Max M(r) 1.87 · 102 3.20 · 101

5.0 Ave N(r) 8.24 · 101 5.79
M(r) 3.60 4.71 · 10−1

Max M(r) 4.932 · 103 7.930 · 102

4.0 Ave N(r) 1.23 · 103 3.57 · 102

M(r) 1.66 · 102 3.01 · 101

Max M(r) 4.630 · 105 9.862 · 104

3.0 Ave N(r) 3.38 · 104 1.30 · 104

M(r) 5.46 · 103 1.30 · 103

Max M(r) 1.145 · 107 2.681 · 106

value of the maximum list size Ave M(r) in the proposed
decoding algorithm is less than 1/4 of that in the GBF de-
coding algorithm. These results show that the effectiveness
of the proposed decoding algorithm. By Table 2, the values
Max M(r) and Ave M(r) in the proposed decoding algorithm
are less than 1/4 and 1/6 of those in the GBF decoding algo-
rithm, respectively. These results indicate that the proposed
method also works well for the (104, 52, 20) QR code.

(The results on the space complexity for the adaptive
procedure)

We show the results of decoding with the adaptive pro-
cedure (in which we update as c̃ref = c̃∗) for the (63, 30, 13)
BCH code and the (104, 52, 20) QR code in Tables 3 and
4, respectively. We also show the number of updating ref-
erenced codeword (which is equal to the number of the past
referenced TEPs stored in memory) in the proposed decod-
ing algorithm with the adaptive procedure in Tables 5 and
6.

By Table 3 for the (63, 30, 13) BCH code, the maxi-
mum list size Max M(r) in the proposed decoding algorithm
is less than 2/5 of that in the GBF decoding algorithm at each
SNR. Furthermore, the average values of the maximum list
size Ave M(r) in the proposed decoding algorithm are less

Table 5 The number of past referenced codewords in the proposed de-
coding algorithm for the (63, 30, 13) BCH code.

Eb/N0 Ave R(r) Max R(r)

5.5 1.025 10
5.0 1.056 12
4.5 1.117 12
4.0 1.215 14
3.5 1.394 16
3.0 1.638 18
2.5 1.984 16
2.0 2.425 24

Table 6 The number of past referenced codewords in the proposed de-
coding algorithm for the (104, 52, 20) QR code.

Eb/N0 Ave R(r) Max R(r)

6.5 1.004 8
6.0 1.013 8
5.5 1.039 10
5.0 1.101 12
4.5 1.209 14
4.0 1.393 16
3.5 1.714 20
3.0 2.189 22

than 1/3 of those in the GBF decoding algorithm. By Ta-
ble 4 for the (104, 52, 20) QR code, the values Max M(r)
and Ave M(r) in the proposed decoding algorithm are less
than 1/4 of those in the GBF decoding algorithm†. By Ta-
bles 5 and 6, the average values of R(r) are fairly small and
the maximum value of R(r) is only 24 at 2.0 [dB] for the
(63, 30, 13) BCH code. On the other hand, the average and
the maximum values of M(r) are 156 and 2,801 at 2.0 [dB],
respectively, so the values R(r) seem to be negligible. These
values demonstrate that there are almost no increases of the
space complexity for the proposed decoding algorithm even
though we store the past referenced TEPs. Note that the av-
erage and maximum values R(r) are hardly increased even
for the long (104, 52, 20) QR code.

(The results on the number of generating TEPs)
The number of generating TEPs N(r) is one of indices

to evaluate time complexity in heuristic search MLD algo-
rithms [2], [8] although the reduction of the time complexity
led by reducing N(r) may not be so large in the whole de-
coding complexity.

By Tables 1 and 2 for decoding with fixed c̃ref , N(r) in
the proposed decoding algorithm are less than 2/5 of N(r) in
the GBF decoding algorithm even at low SNRs. These re-
sults demonstrate the proposed decoding algorithm reduces
the time complexity of the GBF decoding algorithm as well
as the space complexity.

By Tables 3 and 4 for decoding algorithms with adap-

†The ratio of the value Ave M(r) of the method in [6] to that
of the GBF decoding algorithm is about 2/5 at 5.0 [dB] for the
(104, 52, 20) QR code. By Table 4, the ratio of the value Ave M(r)
of the proposed decoding algorithm to that of the GBF decoding
algorithm is about 1/8 at 5.0 [dB] for the (104, 52, 20) QR code .
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tive procedure, N(r) in the proposed decoding algorithm is
less than 2/5 of N(r) in the GBF decoding algorithm even
at 3.0 [dB]. These results demonstrate the proposed method
also reduces the time complexity of the GBF decoding algo-
rithm even when we adopt the adaptive procedure.

7. Concluding Remarks

In this paper, we propose a new heuristic search method for
reducing the space complexity of the GBF decoding algo-
rithm. The GBF decoding algorithm is identical to the well-
known A� decoding algorithm and includes the original BF
decoding algorithm. As a result, the proposed method re-
duces the space complexity of the well-known A� and the
original BF decoding algorithms. Though heuristic func-
tions considered here are restricted by a condition, we show
this class of heuristic functions includes some well-known
functions. The proposed decoding algorithm guarantees to
perform MLD since the set of generated candidate code-
words is identical to that in the GBF decoding algorithm.
Since the proposed decoding algorithm also reduces the
number of generated TEPs which tends to vastly increase
from low to medium SNRs, the proposed decoding algo-
rithm reduces not only the space complexity but the time
one in the GBF decoding algorithm.

As future works, we need to develop a method for
heuristic search MLD algorithm with powerful heuristic
functions such as in [6], [7]. More detailed comparisons be-
tween the proposed decoding algorithm and methods in [6],
[7] are to be evaluated.
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Appendix A: The Proof of Theorem 1

It is sufficient to show that the TEP with the ν-th smallest
heuristic value among all TEPs has been already generated
and stored in the list at the beginning of ν-th iteration of the
decoding algorithm. We will prove it by the mathematical
induction. Let t(Jq) with the support Jq be the TEP with the
q-th smallest heuristic value among all possible TEPs.
(i) The case of ν = 1:

By the conditions (C1) and (C2), the best pattern t(J1) is
either t(is) or t(i′p). The initial list of TEPs is constructed
by Eq. (24) so t(J1) has been already stored in the list
M(µ(J1)) in the first iteration.

(ii) The case of ν > 1:
Let Tν denote the set of all ν − 1 best patterns before the
ν-th iteration. i.e.,

Tν =
{
t(Jq) | q = 1, 2, . . . , ν − 1

}
. (A· 1)

Assume that we have exactly selected all ν−1 TEPs in Tν
before the ν-th iteration.
(a) If µ(Jν) = iq ∈ S (0) such that iq < is, there is t(J) such

that both µ(J) = iq+1 and t(Jν) is the adjacent pattern
of t(J). We have F(t(J)) ≤ F(t(Jν)) and t(J) ∈ Tν by
the condition (C2). Therefore t(J) was selected as the
best pattern at P2) in a previous iteration. When such
t(J) was selected as the best pattern, t(Jν) has inserted
into the list M(iq) at P4-a) in the same iteration.

(b) Arguing similarly to the case of µ(Jν) ∈ S (0), when
µ(Jν) = i′q ∈ S (1) and i′q < i′p, t(Jν) has inserted into the
list M(i′q) at P4-b) in a previous iteration.

(c) If µ(Jν) = is ∈ S (0), the TEP t(J) such that J =
Jν\{is} satisfies F(t(J)) ≤ F(t(Jν)) and t(J) ∈ Tν by the
condition (C1). Therefore such t(J) ∈ Tν was selected
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as the best pattern at P2) in a previous iteration and then
t(Jν) has inserted into the list M(is) at P4-c) in the same
iteration.
Similarly, when µ(Jν) = i′q ∈ S (1), we can show t(Jν)
has inserted into the list M(i′p) at P4-c) in the λ-th itera-
tion such that λ ≤ ν.

As we mentioned in (i), since the first best pattern t(J1) has
been generated when initial lists has been constructed by
Eq. (24), the assumptions of (ii) are satisfied and this com-
pletes the proof. �

Appendix B: The Proof of Lemma 3

We will prove the lemma by the mathematical induction. Let
ν represent the iteration number.

(i) The case of ν = 1:
The first referenced codeword is the same (c̃ref = c̃∅) in
both decoding algorithm. So the heuristic values of the
first best pattern selected at S2) and P2) are identical.

(ii) The case of ν ≥ 2:
Assume that heuristic values of all TEPs generated before
the ν-th iteration of the proposed decoding algorithm are
the same as those of the GBF decoding algorithm. So the
heuristic values of the best pattern t(J) selected at S2) and
P4) in the ν-the iteration are identical.
We first consider the heuristic value of t(Ja∪ iq), iq ∈ S (0),
which is obtained at P4-a) after selecting t(J) as the best
pattern. This TEP t(Ja ∪ iq) is generated at the same it-
eration of generating t(J)(= t(Ja ∪ iq+1)), iq+1 ∈ S (0), in
the GBF decoding algorithm since both of them are ex-
tended patterns of t(Ja). Then their heuristic values are
calculated by referring the same codeword, say c̃′ref . On
the other hand, by the step (a) of the proposed decoding
algorithm with the adaptive procedure, if we calculate the
heuristic value of t(Ja ∪ iq) by referring c̃′ref , it is identi-
cal to that in the GBF decoding algorithm. Similarly, the
heuristic value of t(Ja ∪ i′q), i′q ∈ S (1), which is obtained
at P4-b) is calculated by the same referenced codeword
and thus it has the same heuristic value in both decoding
algorithm.
Next we consider the heuristic values of t(J ∪ is) and
t(J ∪ i′p) which are obtained at P4-c) after selecting t(J)
as the best pattern. These TEPs t(J ∪ is) and t(J ∪ i′p) are
also generated in the same iteration of the GBF decoding
algorithm and hence the heuristic values of them are iden-
tical. Therefore, heuristic values of TEPs generated in the
ν-th iteration of the proposed decoding algorithm are the
same as those of the GBF decoding algorithm.

The arguments (i) and (ii) complete the proof. �

Appendix C: Comparison with the Improved Method
of [8]

Valembois et al. have proposed an improved method of the
original BF decoding algorithm (we will call this method the
improved BF (IBF) decoding algorithm) [8]. In this section,

we compare the proposed decoding algorithm with the IBF
decoding algorithm.

The IBF decoding algorithm exploits the property of
the function ∆(·) satisfying Eq. (9) as well as the condition
(C1). We will consider any heuristic functions F(·) satisfy-
ing both the condition (C1) and Eq. (9).

In the IBF decoding algorithm, each list M(1),M(2),
. . . ,M(k) contains at most one TEP while we arrange another
list A which stores TEPs already selected as the best pattern
at S2). After a TEP t(J) is selected as the best pattern, it is
added to the end of the list A.

The initial lists of TEPs are constructed by

M( j) = {t( j)} for j ∈ [1, k], (A· 2)

as in the original BF decoding algorithm. In the initial step
of the algorithm, the list A is set as A = ∅.

When a TEP t(J), µ(J) � k, is selected as the best pat-
tern, we delete it from the list M(µ(J)) and added it to the end
of the list A. It is readily shown by Eq. (9) that the next TEP
to be stored in the list M(µ(J)) is t(J′ ∪ µ(J)) where t(J′) is
given by

t(J′) = arg min
t(I)

{
F(t(I)) ≥ F(t(Ja))

∣∣∣ µ(I) < µ(J)
}
.

(A· 3)

We can show that the t(J′) is the first TEP with µ(J′) < µ(J)
following t(Ja) in the list A if it has been already stored in
the list A. Note that if a selected best pattern has no extended
patterns or if all its extended patterns have been already gen-
erated, we do not need to possess it in the list A.

[The improved BF decoding algorithm [8]]

S’1) Set c̃∅ := uG̃, c̃∗ := c̃∅ and L := L(c̃∅). Construct the
initial lists of TEPs by Eq. (A· 2).

S’2) Select the best pattern t(J) ∈ M(µ(J)) among TEPs in
non-empty lists M( j). If F(t(J)) ≥ L, then output c̃∗

and halt the algorithm.
S’3) Generate the next candidate codeword by c̃J := c̃∅ ⊕

t(J)G̃. If L(c̃J) < L, then set L := L(c̃J) and c̃∗ := c̃J .

S’4) a) Delete t(J) from the list M(µ(J)). If µ(J) � k, store
t(J) into the list A.

b) Find a TEP t(J′) which satisfies Eq. (A· 3) in the list
A. If such t(J′) exists, then generate t(J′ ∪ µ(J)) and
store it in the list M(µ(J)).

c) If there is an empty list M( j) with µ(Ja) < j, j � µ(J),
store t(Ja ∪ j) in the list M( j).

d) If all extended patterns of the TEP t(Ja) have been
already generated, delete it from the list A.

S’5) If M( j) = ∅ for all j ∈ [1, k], then output c̃∗ and halt
the algorithm. Otherwise, go to S2). �

Note that for a selected best pattern t(J), at most one
TEP is newly stored in a list (the selected best pattern is
only moved from the list M(µ(J)) to the list A and the new
generated TEP is stored in the list M(µ(J))). Therefore the
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list size increases at most by one in each iteration.
We can easily show that the function ∆(·) satisfies con-

ditions both (C1) and Eq. (9). Since the function ∆(·) also
satisfies the condition (C2), the proposed decoding algo-
rithm can also employ it. By Proposition 1, we set S (0) =

[1, k] and the number of TEPs newly stored in lists in each
iteration of the proposed decoding algorithm is at most two
(one is an extended pattern and the other is an adjacent pat-
tern). The list size of the proposed decoding algorithm also
increases at most by one in each iteration since the selected
best pattern is deleted from the list.

We have the following proposition on the relationship
between the IBF decoding algorithm and the proposed de-
coding algorithm.

Proposition 4: Assume that both the IBF and the proposed
decoding algorithms employ a heuristic function satisfying
the condition (C1) and Eq. (9). We further assume that the
heuristic function satisfies the condition (C2) with S (0) =

[1, k] such as the function ∆(·). Then the maximum list size
of TEPs in the proposed decoding algorithm is no more than
that in the IBF decoding algorithm.

(Proof ) We will prove the proposition by mathematical
induction. We here denote the iteration number by ν.
(i) The case of ν = 1:

The initial list constructed by Eqs. (24) and (A· 2) indi-
cate the list size of the proposed decoding algorithm is no
more than that in the IBF decoding algorithm. Note that
Eq. (9) cannot tell that we only need to store t(k) in lists
so we need to store other TEPs with Hamming weight one
in the IBF decoding algorithm.

(ii) The case of ν ≥ 2:
We first remark that the selected best pattern t(J) in the
ν-th iteration of the IBF and the proposed decoding al-
gorithms is identical since both algorithms perform the
priority-first search.
Denote the set of TEPs stored in lists in the proposed
and the IBF decoding algorithms by Tp and TIBF , respec-
tively. Then there exists a one-to-one mapping φ from
each element of Tp to that of TIBF given by

φ : Tp → TIBF , (A· 4)

and

φ(t) � φ(t′) if t � t′. (A· 5)

Actually φ(t(J)) = t(Ja) or φ(t(J)) = t(J). i.e., when a
TEP t(J) is newly generated in the ν-th iteration of the
proposed decoding algorithm, then the same iteration of
the IBF decoding algorithm possesses the corresponding
TEP of the form of either its adjacent pattern t(Ja) in the
list A or t(J) itself in the list M(µ(J)). Based on this map-
ping, we can see that there is a correspondence between
the TEP newly generated in the proposed decoding algo-
rithm and a TEP stored in list in the IBF decoding algo-
rithm. Therefore, the increased list sizes in the ν-th itera-
tion of both algorithms are the same.

From the arguments (i) and (ii), we can prove the theorem.
�

Unfortunately, as known to the authors, there are no
heuristic functions which satisfy both conditions (C1) and
Eq. (9) except for the function ∆(·). The function ∆(·) is in-
effective heuristic function compared with the function f (·)
or g(·) since it only utilizes the information over the k MRI
positions while functions f (·) and g(·) utilize one over the
remaining n − k positions as well as one over the k MRI po-
sitions. Therefore we may say that the proposed decoding
algorithm is more effective than the method in [8].
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