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An Application of Coding Theory into Experimental Design

— Construction Methods for Unequal Orthogonal Arrays —

Shigeichi Hirasawa *

Abstract— The relationship between coding theory and
the orthogonal arrays is discussed in terms of the theory of
Galois field. Since coding theory easily gives many codes
with large minimum distance, it is useful to construct the
orthogonal arrays with large strength which is applicable
to experiments with high order interaction effects between
factors. First, we review the result from the argument of
coding theory, and starting from complete design, orthogo-
nal design is introduced from the view-point of experimental
design. Next, correspondence of parameters between error-
correcting codes and orthogonal arrays is clarified. Finally,
by using the construction methods for unequal error pro-
tection codes, orthogonal arrays are extended to those with
unequal strength. Methods for constructing the orthogo-
nal arrays with unequal strength based on coding theory
is practically important, because most of all real problems
which we usually treat must assume that the interaction
effects between two or more factors of experiments are not
equal. If the model for experiments is given, we can at-
tain the same accuracy by the orthogonal design as that by
complete design with fewer experiments.

Keywords—Experimental design, Orthogonal array, Error-
correcting code, Galois field

1 Introduction

In the fundamentals in computer sciences, one of
the most important theory is coding theory, or the the-
ory of error-correcting codes (ECCs), which has the
history of almost a half century [Hira99]. Research
works in this area have been devoted and accumulated
to apply them into actual systems such as the com-
puter main memory, data transmission systems, deep
space communication systems, the compact disc (CD)
for music players, cellar phones and so on.

On the other hand, in the field of statistical data
analysis, the experimental design has contributed to
effectively analyze experimental data [Taka79]. Espe-
cially, orthogonal arrays (OAs) are important to con-
struct methods for experiments and to analyze the data
with taking into account of interaction effects between
factors [HSS99].

Many methods for constructing the OAs have been
given by techniques based on projective geometry (PG)
[Taka79]. They are useful to apply to experiments
with low order interaction effect, and they are diffi-
cult, however, to apply to those with higher one. Since
we can easily obtain many codes with large minimum
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distance by coding theory [PWT71][MS77], it is effec-
tive to construct the OAs with large strength based on
ECCs, where the large minimum distance of the codes
corresponds to large strength of the OAs which can
treat high order interaction effects between factors of
the experiments. Note that the purpose of introducing
the OAs is to make the number of experiments reduce
without degradation in accuracy of the estimation of
parameters compared to complete design.

First, we show that there is a close relationship be-
tween the ECCs and the OAs through the theory of Ga-
lois field. Constructing methods for linear OAs given
by those for linear codes are discussed, and the corre-
spondence between parameters of the ECCs and those
of the OAs is clarified.

Based on an idea of unequal error protection codes
[MWG67][Gils83], OAs are extended to those with un-
equal strength (UOAs) [SMHO05]. If the model of the
experiments assumes that there do not exist the all of
interaction effects between L or fewer factors, then the
UOAs can effectively eliminate needless experiments.
The constructing algorithm for the UOAs is demon-
strated. We show a few examples of the UOAs.

In section 2, we describe brief introduction of error-
correcting codes, complete design, and orthogonal de-
sign. Section 3 discusses properties of error-correcting
codes and orthogonal arrays. The correspondence be-
tween them is also discussed. In section 4, a new con-
struction method for orthogonal arrays with unequal
strength is proposed based on that for unequal error
protection codes, and its examples are shown in section
5. Concluding remarks are stated and recent works and
further research are notified in section 6.

Throughout this paper, we discuss linear OAs and
UOAs with s level, where s is a prime power. Nonlinear
OAs and UOAs can be constructed by nonlinear codes
[HSS99][SMHO05].

2 Preliminary
2.1 Error-Correcting Codes

In this section, we briefly review the results ob-
tained by coding theory [PW71][MS77][Hira83][Hira99)].

2.1.1

Definition 2.1 Suppose a g-ary code of length n, num-
ber of information symbols k, and (designed) mini-
mum distance d denoted by an (n, k, d) code, then the
code consists of g-ary vectors &1, ®2, - - -, xps which are
called codewords, where
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and where ¢ is a prime power. O

If the minimum distance of the code is not specified,
we denote the code as an (n, k) code. The rate r of the
(n,k,d) code is defined by r = k/n. M is the number
of coedwords.

2.1.2 Linear Codes
A linear code C has the following property:

Ve, x5 € C,3xp = x; +x; € C, (2.3)

A generator matrix of an (n, k, d) (linear) code is given
by
L1

i (2.4)

Tk

where x1,@s, -, xg are chosen to be mutually inde-
pendent, where the rank of G is k. By a combination
of row operations and column permutations, G can be
lead to echelon canonical form G’:

G = (I, P, (2.5)

which generates equivalent systematic code to the code
C, where Ij; denotes the identity matrix of dimension k.
Denote the information symbols by w = (uq,us, -+, ug),
then the codeword x is given by

z =uG. (2.6)

A parity check matrix H of the code C generated by
G’ is given by

H=[-PT I,4]. (2.7)
Note that the following equation holds:
VT, T H' = 0. (2.8)

To construct an (n, k, d) code, the following theorem is
important (See Appendix B [Hira83]).
Theorem 2.1 Let H be a parity check matrix of the
(n,k) code. The minimum distance of the code is at
least d, if and only if every combination of d — 1 or
fewer columns of H is linearly independent.’ O
For the later discussion, dual coeds must be defined.
Since the row space of generator matrix G gives sub-
space C of dimension k, its null space is a vector space
C* of dimension n — k.

I This condition is equivalent to that the sum of every combi-

nation of d — 1 or fewer columns is non-zero.

Definition 2.2 (Dual codes) Let a code C be a sub-
space of n-tuples, then a dual code C* of a code C is
a null space of C. O
Note that the generator matrix G of the code C' is the
parity check matrix H* of the code C*+(G = H™), and
similarly H = G*+. If C is an (n, k) code, then C* is
an (n,n — k) code.
2.1.3 BCH Codes and RS Codes

We already have many linear codes with various pa-
rameters of n, k, and d which can be easily constructed.
Theorem 2.2 (BCH code) Let the roots of a genera-
tor polynomial g(z) of the (n, k) BCH code over GF(q)
be amo, a0+l ... qmotd=l where my is any integer
and «, any element of GF(¢™). Then the minimum
distance of the code is at least d. O
Theorem 2.3 (BCH bound) An (n,k,d) BCH code
over GF(q) has parameters such that:

n=q" —1,

n—k<m(d-1). (2.9)

O

Corollary 2.1 (Binary BCH code bound) A binary
(n,k,d) BCH code has parameters such that:

n=2"-1

n—k<ml(d-1)/2],
where |a] implies the largest integer larger than or
equal to a. O
For an (n, k,d) BCH code over GF(q), letting m = 1,
and n = ¢ — 1, we have RS code over GF(q).

Corollary 2.2 (RS code) An (n,k,d) RS code over
GF(q) has parameters satisfying:

(2.10)

n=q—1,
k<qg-—1, (2.11)

d=n—-k+1
O

2.2 Experimental Design

First, we give a simple example to show the cases
of experiments.
Example 2.1 (Experimental system) Let Fi, F>, and F3
be factors which may affect a ratio y of defective product,
and let each factor have 2 levels, where Fi, F>, and F3
correspond to the choice of materials, machines, and tem-
peratures, respectively as shown in Fig. 2.1.

O

Suppose that we want to analyze how the level of fac-
tors affects the ratio of defective products. In this ex-
ample, we assume that the model has three input fac-
tors with discrete variables and one output character-
istic with continuous variable?.

2 If all input factors are continuous variables, then the regression
analysis is applied, while input factors are composed of both
continuous and discrete variables, then the variance analysis
is used.



I3 Fi: F} (made in A company)

. .
5 Experimental | F}(made in B company)
’ system Fy' F2 (a new machine)

F3_’

F? (an old machine)
Fy: F$(100C)
F3(200C)
y : Ratio of defective product

Figure 2.1: A model of the experiment system

2.2.1 Complete Design

We usually assume a mode for experiments based
on hypothesis, assumption, or prior knowledge for the
experimental system. The model is represented by a
structure and its parameters, and is expressed by for-
mula.
Example 2.2 (Model of experimental system) In Exam-
ple 2.1 shown in Fig. 2.1, if we assume a model for which
the interaction effects have all combinations of 2 factors (the
2nd order interaction), then we have the following equation:

1 2 3
Yui,vavg = P+ 00 + 0y + 0y

1,2 1,3 2,3
R S e e PPN

(vi €4{0,1}, i € {1,2,3})

(2.12)

where yu, 5,05 is the ratio of defective products which is
given for level combination Fy, F32 F33~ In Eq.(2.12) pis a
constant which has no relation with levels, and is called the
central effect. af,i is the effect which appears when F; is
is the

effect which appears by combining Fjlll with F,ffz, and is

set for v;, and is called the main effect of Fj. 0‘:/17:’11»21/1'2

called the interaction effect of F;, Fi,. €u, 5,05 is @ random
error. O

The complete design always requires experiments with
all combinations of levels for each factor which is called
a complete array as shown in Table 2.1 for Example 2.1.

Table 2.1: Experiment conditions and data

Experiment no. | Fi  Fy» F3 | y [%]
1 0 0 0 05
9 0 0 1| 04
3 0 1 0] 01
4 0 1 1| o1
5 1 0 0 1.2
6 1 0 1] 15
7 1 1 0 0.7
8 1 1 1 0.6

We must estimate parameters from the output so
that maximum likelihood and minimum squire error
criteria are satisfied. For Example 2.2, we have the
following relations: For any i € {1, 2,3},

Z af,i =0,

v; €{0,1}

(2.13)

and for any i1,i9 € {1,2,3}, 41 # iq,

Yo oaiz =0 for Vi, €{0,1}, (214)
1/7126{0,1}

> oal =0 for Wy, €{0,1}.  (2.15)
vi; €{0,1}

A11,8

Letting i, &}, &y, ;* be a estimator of y, ajj, 04251 ;Zz, the
estimation of parameters is completed by:

. 1
n=3 Z
(v1,v2,v3)€{0,1}3

1 N
Z Z Yvy,va,vs - M,

(v1,v2,v3)€{0,1}3,v;=¢

(2.16)

Yvi,va,vs)

(2.17)
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(v1,v2,v3) € {0,1}3,
vipg =i vip =¥

(2.18)

For example, &4 = 1 (40,0,0 + ¥0,01 + Y0,1,0 + ¥0,1,1) — /i
is calculated as follows:

Yo00 = [ +ab+ad+af+ags+ags+ags+eooo,
Yoo1 = p +ab+aj+al+agstagi+agi+enon,
Yo10= p +aj+ai+al+agi+ags+ais+eonio,
You1= p +ajt+oi+ol+agi+tagi+ail+eonn,
&b = (p—f) + ab + &,

where é(l) = %(607070 + €0,0,1 + €0,1,0 + 607171). This is be-
cause we assumed Eqs.(2.13), (2.14) and (2.15). When
the output y for each experiment is given as Table 2.1,
an estimated value of y is calculated as shown in Ap-
pendix A.

2.2.2 Orthogonal Design

The orthogonal design is used to reduce the number
of experiments depending on a model of experiments,
which is assumed usually by prior knowledge of objec-
tive systems.

Definition 2.3 [HSS99] An M x n array A with ele-
ments from GF(s) is said to be an Orthogonal Array
with s levels and strength 7, if every M x 7 subar-
ray of A contains each T-tuple based on GF(s) exactly
same times as row. We will denote such an array by
OA(M,n,s, ). |
Example 2.3 In Example 2.1 shown in Fig. 2.1, if we
assume no interaction effect for all factors (the 1st order
interaction), then we have the following equation:

1 2 3
Yorwawy =+ 01 + 00, + 0y + €0 0,03

In this case, OA(4, 3,2,2) as shown in Table 2.2 is enough
to estimate parameters, hence the number of experiments
decreases. Table 2.2 is called an orthogonal array for Ex-
ample 2.1. |



Table 2.2: Experiment conditions and data

Experimental no. | Fy Fy F3 | y(%)
1 0 0 0 0.5
2 0 1 1 0.1
3 1 0 11| 15
4 1 1 0 0.7

The estimation of parameters is also followed:

. 1
H’ = @ Z yul,l/Q,D37 (2]‘9)
(vi,v2,v3)€EA
i 1 .
Cy = T Z Yviva,vs = Hy (220)
| A%

(vi,v2,v3)€AL
where A is the set of the rows of OA(4,3,2,2) and
Ay = {(v1,v2,v3)|(n1,12,v3) € A,v; = ¢}. For exam-
ple, &b = 2(yooo + yo11) — /i is given as follows:

_ 1 2 3
Y0,00 = M +og+ o+ oag+eooo,

_ 1 2 3
Yo,1,1 = M togtoaft+oa)teo,

& = (p—f) + of + &,

where, &} = 1 (eo,0,0 + €0,1,1). This is because we as-

sumed Eq.(2.13).

Let FY,Fs,...,F, denote the n factors to be in-
cluded in the experiment. We assume that each factor
has s levels, so we can describe the set of levels as
GF(s), where s is a prime power.

1. Case 7 = 2 (the 1st order interaction)

If we can assume that there is no interaction ef-
fect, we have

yul’u2""’l/" =p + all/l + 0412,2 + ...+ Olgn
vy, (2:21)

we can reduce the number of experiments by us-

ing an OA with strength 7 = 2, i.e., OA(M, n, s, 2).

When we use an OA to experimental design, each
column corresponds to the factor in the experi-
ment, and each row, to the level combination of
the factors.

2. Case 7 = 2-4 (the 1st and the 2nd order interac-
tion)
We consider some interaction effects of two fac-
tors. Let I C {1,2,...,n}? be the set whose ele-
ment is a pair of indices of two factors in which
there may be interaction effect. When we can
assume that

— 1 2 n
Yoiva,.ov, = M + Qy,, + Qg + ...+ Qg

+ ) Al e (2:22)
(i1,i2)€l

we need an M x n array A which satisfies the
following three conditions;

(1) The array A has strength 2.

(2) The array A partially has strength 3, that
is, for any 41,42 ((i1,492) € I), every M x 3
subarray, which contains two columns that
correspond to F;, and Fj,, contains each 3-
tuple based on GF(s) exactly same times as
TOwW.

(3) The array A partially has strength 4, that is,
for any 41,1%9,13, %4 ((il, ig), (ig, ’L4) S I), M x
4 subarrays, which contains four columns
that correspond to F;,, Fi,, Fi,, and Fj,,
contains each 4-tuple based on GF(s) ex-
actly same times as row.

In the special case, if there are all interaction ef-
fects of two factors, we need an OA with strength
4. Generally, if there are all interaction effects of
L factors, we need an OA with strength 7 = 2L.

Definition 2.4 (L-th order interaction model) Let there
exist the interaction effects of all combinations of ¢ fac-
tors for £ =1,2,---, L, then a model is called the L-th
order interaction model, where the following equation
holds:

yVl;V27~--7Vn =M + aulil
i1€{1,2,...,n}

11,02
+ g S

(i1,i2)€{1,2,...,n}?

+ 2

(11925500 )€{1,2,...,n}F

01,82,.-0,0L
VigsVigye-sVip,

(2.23)

+6V17V2»--~7Vn’

d

If L = 0, then y is represented by only a central effect u
(and a random error) . If L = 1, then y is represented
by @ and main effects as.

Theorem 2.4 If an experiment system is assumed to
be the L-th order interaction model, then the optimum
experimental design is given by OA(M,n,s,2L). O

Our problem to be solved is to derive the smallest
M for given n, s, and t.

3 Error-Correcting Codes(ECCs) and Or-

thogonal Arrays(OAs)

3.1 Properties of Orthogonal Arrays

In the following, unless mentioned explicitly, we
will consider the case that s = 2 for simplicity. An
OA(M,n,2,7) is said to be linear if the rows of O A(M,
n,2,7) form a linear vector space. If an OA(M,n,2,7)
is linear, OA(M, n, 2, T) has a basis for the linear vector
space. This basis is given in the form of (logs M) x n
matrix called a generator matrix.

Theorem 3.1 [HSS99] Let A be an M xn linear array
with binary elements, and G be a generator matrix of
A. Then A is an OA(M,n,2,7) if and only if any 7
columns of G are linearly independent over GF(2). O



Theorem 3.2 [HSS99] An M x n array A with binary
elements is an OA(M, n,2,7) if and only if

> (=,

v:row of A

for all binary vectors w of length n containing w 1’s,
for all w in the range 1 < w < 7, where the sum is over
all rows v of A. O

3.2 Orthogonal Arrays and Error-Correcting
Codes
Let Wx(w) be the Hamming weight of a vector
w = (wy,ws,...,w,). We consider the case of ¢ = 2
as well as OAs.
C is said to be linear if C' is a linear vector subspace.
If C is linear, C has the dual code Ct. Let d* be the
minimal distance of C+. Then d" is said to be the dual
distance of C.

Theorem 3.3 [HSS99] If C is a binary (n, k,d) code
over GF(2) with dual distance d*, then the codewords
of C form the rows of an OA(M,n,2,d+ —1). Con-
versely, the rows of a linear OA(M,n,2,7) form an
(n, k, d) linear code over G F(2) with dual distance d*+ >
7+ 1. If the OA has strength 7 but not 7 + 1, then
d*+ =741 hold. O

Example 3.1 Let C' = {000,011,101,110}. This is a bi-
nary (3,2,2) code. Then C* = {000,111}, so the dual
distance of C' d*+ = 3. Therefore, the OA corresponding to
the code C, that is in Table 2.2, is an OA(4,3,2,2). d

3.3 Correspondence between ECCs and OAs

Let G be a k xn matrix over GF(2) which generates
an OA(M,n,2,7). Then any 7 columns of G are lin-
early independent over GF'(2). While a code generated
by the parity check matrix G is the dual code C+ of
the code C which is generated by the generator matrix
G. From Theorems 3.1 and 3.3, we have the Table 3.1
which shows a correspondence of parameters between
ECCs and OAs. Technical terms and symbols (vari-
ables) are used which are generally used in each field.
If there is no confusing, we use the same symbols.

3.4 OAs from ECCs
(1) Binary Hamming codes

A binary (n,k,d) Hamming code is a class of the
binary BCH codes with d = 3, hence its parity check
matrix is given by a (n — k) X n matrix whose columns
consist of all distinct non-zero vectors over GF(2).
Example 3.2 A parity check matrix H of the (7,4,3)
Hamming code is given by:

1 01 1 1 0 O
H=|1 1010 10 (3.1)
1 11 0 0 0 1
then we have a generator matrix G:
1 0 0 01 1 1
01 00 0 1 1
G= 0 01 01 01 (3.2)
0O 0 01 1 1 0

A dual code Ct of the code C is a maximum length se-
quence (7, 3,4) code. O

Generally, a dual code of the (n, k, 3) Hamming code C
is a (n,n—k,2"k=1) code C+ [HSS99]. We then have
OA(2" % n,2,2) from the code C*, and OA(2F,n, 2,
on—k—-1 _ 1)_
(2) RS codes

The parameters of an (n, k,d) RS code over GF(q)
(¢ > 2) are given by Eq.(2.11). Since all RS code are
MDS codes, d = n — k — 1 holds.

Theorem 3.4 [HSS99] Let code C be an (n,7,n—7+
1) RS code over GF(q) which forms OA(s™,n,s, 7).
Then the dual code C+ is an (n,n — 7,7+ 1) RS code
which forms OA(s" " 7,n,s,n — 7), where ¢ = s is a
prime power. O

4 Unequal Error Protection Codes
(UEPCs) and Orthogonal Arrays with

Unequal Strength (UOAs)
4.1 Orthogonal Arrays with Unequal Strength
Definition 4.1 An M xn array A with elements from
GF(s) is said to be an OA with s levels and strength
T = (71,72,...,Tn) if every M x 7; subarray of A, which
contains i-th column of A, contains each 7;-tuple based
on {0,1} exactly same times as row. We will denote
such an array by OA(M,n,2,7). Then we will call an
OA(M,n,2,7) OA with unequal strength if the com-
ponents of T are not mutually equal. O

When OA(M,n,2,(11,72,...,7s)) is applied to ex-
perimental design, we can estimate the interaction ef-
fects of at most | | factors which contains i-th factor.
There are many cases that UOAs reduce more numbers
of experiments than OAs with equal strength. For ex-
ample, let F1, F5 and F3 be the factors to be included
in the experiment. Suppose we know that there are the
interaction effects of F}F5 and F}F3 but not FyF3. If
an OA(My, 3,2,4) is used, we can estimate not only the
interaction effects of F Fy, F} F3 but FsF3, although we
need not estimate the interaction effect of F» F5. On the
other hand, If an OA(M>,3,2,(4,2,2)) is used, we can
not estimate the interaction effect of FyF3. Therefore,
UOA can reduce the number of experiments.

4.2 UOAs and UEPCs
The separation (dq,ds, ...
defined by

,dy) of linear code C is

d; = min{dist(u,v) | u = (ug,ug,...,u,),
S Un),u,v € Ciuy # v}y

for i=1,2,...n.

v = (v1,v2,..

If a linear code C' has the separation whose components
are not mutually equal, the code C'is called an unequal
error protection codes. Let (di,ds,...,d;) be the sep-
aration of C* which is the dual code of C. Then we
will call (di,dy,...,d+) the dual separation of C.



Table 3.1: Correspondence of parameters between ECCs and OAs

ECCs OAs Notes
# of codewords: M # of experiments (runs): M
Codewords:x1, 2, -, xpnr | Array A = (v1", 02", -, op")" T =
Alphabet size: ¢ # of levels: s p=3s
Code length: n # of factors: n
Dual distance d* strength: 7 T=d* -1

Theorem 4.1 If C is a binary (n, k, d) code over GF'(2)
with dual separation (di,ds,...,d\), then the code-
words of C form the row of an OA(2¥,n, 2, (df —1,dy —
1,...,d+-—1)). Conversely, the rows of a linear OA(M,
n,2,(r1,72,...,7,)) form an (n,logy M, d)s linear code
over GF(2) with dual separation (di,ds, ..., d;), where
df > +1,i=1,2,...,n. If the OA has strength 7,
but not 7; + 1, di- =7+ 1 (i =1,2,...,n). O

We show two construction methods of UOAs. These
are derived from UEPCs.

Construction Method 1 Let there be two generator
matrices of OAs; G is the generator matrix for a lin-
ear OA(My,n1,2,7), and G5 is the one for a linear
OA(Ms,n9,2,7"), where 7/ < 7. Let G; and G2 be
joined as submatrices of G where G; and G overlap,
as shown in Fig.4.1. The OA with generator matrix G
is a (M1 Ms) X (n1 +ns —ngr) array. Let nor, < 7//2.

n

Figure 4.1: Construction method of UOA

Theorem 4.2 An OA by Construction Method 1 is an
OA(MyMs,ny + ny —nor, 2, (11,72, .., Tn)), Where

TiZT (i=1,2,...,n1—n0L),
n>7 (i=n1+1,n+2,...,n1 +n2+noL),
Tl‘ZT-I-T/—TLOL (i:nl—noL—l—L...,nl).

d

Construction Method 2 Let o denote a primitive
clement of the field GF(22™). Then 3 = o®"*! is a
primitive element of the field GF(2™) which is a sub-
field of the field GF(22™). Consider an OA with 2
levels which have the generator matrix

m m m
o2 2™l 22

33 0 0

1 «
G_10-~ 0

The OA with generator matrix G is a 23™ x (22™ — 1)
array, and its strength is at least 2.

Theorem 4.3 Let m be an odd integer. Then the OA
with the generator matrix in (4.1) is an O A(23™, (22—

1),2,(m,72,...,7Tn)), where
o= 4 (i=14j2m+1),7=0,1,...,2™ —2),
7; > 2 (otherwise).

O

5 Examples of UOAs

In this section, we show some examples of UOAs by
Construction Method 1 and 2. And we compare them
with optimal OAs with equal strength.

Firstly, we compare the following OAs;

e (Equal) optimal M x n OAs with 2 levels and
equal strength 4 that is in [HSS99] (n = 11,12,
...,32).

e (Method 1) M x n OAs with 2 levels and par-
tially strength 4 by Construction Method 1 (n =
11,12,...,32): G; in Construction Method 1 is
a generator matrix for an optimal M; X n; linear
OA with 2 levels and equal strength 3 that is in
[HSS99] (n1 = 9,10,...,30), G5 is a generator
matrix for a linear OA(4, 3,2,2), and ngr, = 1.

The number of rows of each OA is shown in Table 5.1.
Then, the number of rows of UOAs by Construction
Method 1 is fewer than that of OAs with equal strength
at many n’s. Therefore, these UOAs can reduce more
number of experiments than OAs with equal strength
under partial interaction effects.

Next, we compare the following OAs;

e The OA with equal strength that has generator
matrix

a227n 92

a22m+1 _4

m
1 « a?"
2 .. 22

G:

1 «

This is an OA(4096,63,2,4). This OA is derived
from BCH codes.

e The UOA with by Construction Method 2, where
let m = 3 in Construction Method 2. This is
0OA(512,63,2, (71, 72,...,763)), where 7, =4 (i =
14+95,7=0,1,...,6), 7, > 2 (otherwise).

Then, the number of rows of the UOA by Construc-

tion Method 2 is fewer than that of the OA with equal
strength. Therefore, the UOA can reduce more number



Table 5.1: The number of rows of OAs

n || Equal | Method 1
16 256 128
17 256 128
18 256 128
19 256 256
20 512 256
21 512 256
22 512 256
23 512 256
24 || 1024 256
25 || 1024 256
26 || 1024 256
27 || 1024 256
28 || 1024 256
29 || 1024 256
30 || 1024 256
31 || 1024 256
32 || 1024 256

of experiments than the OA with equal strength under
partial interaction effects.

6 Concluding Remarks

We have discussed the construction methods of or-
thogonal arrays from those of error correcting codes.
The relation between them is also clarified. Although
coding theory and orthogonal arrays have analogous
problems, the subjects have studied almost separately.
As future discussions, powerful extension to non-linear
cases and mixed orthogonal effect cases are remained.
An approach by projective geometry to construct or-
thogonal arrays is also necessary.
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Appendix A

We show how to calculate an estimated value of y,
when complete design and orthogonal design are used.
(1) Complete design

In Example.2.1, we assume the model

1 2 3
Yoo ws = BT Qy T, + 0,
1,2 1,3 2,3
+aV1,V2 + alq,y;; + al/z,l/a + 6”1#271’37
(v; € {0,1}, i € {1,2,3}),

and the output y for each experiment is given as Table
2.1. Then, by Egs.(2.16) and (2.17),

fi = 0.500
ap = —0.225, 42 =0.125, @& = 0.100,
a1 =0.225, &3 = —0.125, &5 = —0.100

ay2 =0.000, abd=—0025 a2 =0.025,
&yg=0.000, & =0.025 a7g=—0.025,
ad? =0.000, ai%=0.025 a2%=—0.025,
ay7=0.000, &7 =-0025 &Y} =0.025

And, the estimated value of y is as follows.

~ _ A ~1 ~2 ~3
Yvi,vavs = H + am + al/2 + al’s

~1,2 ~1,3 ~2,3
+aV1,V2 + aV1,V3 + aVQ,VS’

(v; € {0,1}, i € {1,2,3}).
(2) Orthogonal design
In Example.2.1, we assume the model

Yor,vawg = B+ O‘il + a12/2 + O‘gg + €uiva s
(s € 0,1}, i € {1,2,3}).



and the output y for each experiment is given as Table
2.2. Then by Egs.(2.19) and (2.20),

fi = 0.500
ag = —0.200, a3 =0.100, &3 = 0.100,
&} =0.200, &2 =—0.100, &5 = —0.100

And, the estimated value of y is as follows.

Z}Vl,l/zﬂ/s = /l + &il + 0732 + 6533
(v; € {0,1}, i € {1,2,3}).
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An Introduction to Coding Theory

and Some Applications

Shigeichi Hirasawa*

abstract

In this note, discussed are an introduction to coding
theory as tutorials. The most important class of codes,
linear codes are described by using matrix representation.
Beunds on error correction capabilities of linear codes
are also shown. Applications of error-correcting codes to

computer maln storage systems are given as a practical
example.

* Professor, Department of Industrial Engineering and
Management, School of Science and Engineering, Waseda
University, 3-4-1, Ohkubo, Shinjuku, Tokyo 160
JAPAN

1. Introduction

Information theory was established by Shannon{l] for
the study of quantitative arguments of information, and
gave an impact to research areas on coding schemes as coding
theory. Although both information theory and coding theory
deal with fundamental problem of channel coding system which
achieves reliable communication over noisy channels, there
is a significant difference between them; clearly different
approaches were made. The former has statistical view-point,
while the latter, constructive and combinatorial view-point.
Actually, coding theory has been developed strongly supported

by modern algebra.

Coding theory has given us a lot of efficient error
correcting codes and their decoding methods {2],13]),[41,(5],
[6],17],[8)]. ‘The main subject of codes is toc correct errors
over ncisy channels. The channel might be deep space
communication link, a satellite communication link or telephone
line. 5ince some kind of electromagnetic waves mbm noise
on the reading and writing head of the tape would cause to
error, the output of the channel (received data) is different
from the input of the channel (transmitted data}. Therefore
main storage medium such as constracted by LSI (Large Scale
Integration) nmemory and external storage medium such as
magnetic tape can also be considered to be the channel. A model
of coding and decoding system is shown in Fig.l.l, where
we assume that the channel is binary symmetric with cross-over
probability p as also shown in' the Figure. This model can

be rewritten for main storage system as shown in Fig.1.2.

The main functions of the coding and decoding system
are summarized as follows;
(i) the reliability of the system
i Bmmmcﬂmm by the prokability of decoding error vma
{ii) the efficiency of the system
; measured by the code rate r,
(iii) the cost of the system

H

measured by the decoding complexity X.

-2 -



In Secticn I1 of this note, as preliminary consideration,
some notations, definitions, and concepts used for coding
theory are shown. As the mosl important class of codes,
linear codes are discussed in Section III. Error correction
capability of codes are reviewed as bounds in Section
IV. Some applications of error correcting codes to computer
storage systems arc described in Section V. Section VI is

comments for further studies.

Although coding theory has twe main class of codes; one
is called block codes and the other, convolutional codes.
In this note, however, we restrict our discussicns to .only the

block code. We assume that symbols from the source and to
the sink are binary.

11, Preliminaries

In this section, we introduce notations and definitions

for coding theory.

.

Consider two binary vectors », and ». of length n such

1 3
that
_¢o (1) {1) {i}
wH\AxH PR eees X 1, (2.1.a)
= i) (J) (1)
xu.LxH D L A (2.1.0)
where
xﬁvu_ xAuumm GF(2), m=1, 2, ..., n.
m m
Definition 2.1 [Hamming distance]: The Hamming distance
an.,.u between x: and Mu is defined by
n . .
= (i} (3
mmnxw.xu.T\M m:ﬁxa X ), {2.2)
m=1
where
G, a=b;
4, (a,b)= . (2.3)
1, a7b.

The Hamming distance is the number of position in which
the vectors differ among n symbols. It is alsc defined by
(2.3) for the non-binary code. The other distance function,
Lee distance has been also used in coding theory. Bbove

two distance measures coincide in the binary case.

Definition 2.2: A binary (n,k,d) code is a set of M

binary vectors * i=1,2,...,M (see Fig.2.1), where 3umw~

ﬁw.m are codewords, n is the code length, k is the number
of information symbols, and @ is the minimum distance of

the code defined by
d= min d. (x. ,x.}, i#j. (2.2}
1<i,jem B 17D

The rate r is defined by

r=k/n. (2.5)

Example 2.1: The even {or odd) parity code shown in
Fig.2.2 is the (9,8,2) code.

Example 2.2: The repetition code of length n is the
{n,1,n) code;
for n=5, 06000
11111 .

Example 2.3: The r out of n code is shown in Fig.2.3
n
Hv.

for n=5 and r=2, where M=(

Definition 2.3: The weight imﬁ.v of ». is the number
(i)

of nonzero symbols .

among n symbols:

n
sznxwvu Tow,(x ) N {276)
where
0, a=0;
w_(a)= (2.7)
1, a=1, Amwmgv



From definition 2.}, we can easily get

do(x, ,%. ) =w (x%.-x%.). (2.8)

Example m.wu
Qmnowoowcwﬁ.owwwoopovnzmnCOHpuoowvnb.

Theorem 2.1: Consider an (n,k,d} code. Then the code

can detect all patterns of d-1 or fewer errors. Similarly,
the code can correct all patterns of t or fewer errors, where

d is at least 2t+1. (See Fig.2.4)

From Theorem 2.1, we see that the (n,k,d) code corrects
#ll patterns of t or fewer errors and simultanscusly detects
those of d'or fewer errors, where Q.Ww‘ d=t+d'+l. The even
parity code of Example 2.1 can detect one error, exactly
speaking all odd number of errors. The repetetion code of
Example 2.2 for length n=5 can correct 2 errors. Next, we
shall discuss the decoding rule.

UmMH:waU: 2.4: Let all of the codewords ®; i=1,2,...,M

of the (n,k,d) code be used equally likely. And let %, be
transmitted and y be received. Then the maximum likelihood
decoding (MLD) algorithm is to decode ¥ into x. by finding =,

] ]
such that

max Priy i

).
5 3

If i#j, a decoding error occurs. If binary symmetric
channel (BSC) with p 1s assumed, then MLD algorithm is equivalent

to the minimum distance degoding (MDD) algorithm: Let

mmﬁwu.%vum, ) (2.9)
then the probability that xu is transmitted and ¥ is received,
MHA%_%uv is given by

miim%nwmﬁlwvz:m. (2.10)
Therefore, if e is minimized Pr{.) is maximized. Thus we

have MDD algorithm such that decode v into kq, whero x4 ig

- K -

the closcst codeword from y. Usual algebraic decoding algorithm,

however, s to find w, from y, ir Q:AJ.E.A:@-:\BH. This
is called the bounded distance decoding (BDD) algorithm.

Linear Codes

In this section, assuming that the code is linear, we

shall describe the algebraic code structures by using matrices.

3.1. Properties of Linear Codes

Let F be the field composed of two elements, i.e., GF(2),
where the addition and multiplication for GF(2) are shawn

in Fig.3.1.

Definition 3.1: An (n,k,d) linear code is a linear

subspace of m:n*o‘w_s.

If Kw and xu are codewords of a linear code, then Nw+Nu

should also be a codeword, since all set of codeword is a subspace.

Thecorem 3.1: The minimum distance for a linear cocde

equals the minimum weight of the nonzero codewords.

Exampie 3.1: The codes given by Example 2.1 and 2.2

are linear but that by Example 2.3 is not linear.

3.2. Generator Matrix and Parity Check Matrix

If the dimension of the linear subspace is k, we can
pick k linearly independent codewords from the (n,k,d) linear
code. We let these codewords be %Hm%m‘...,xw. Then we have

a generator matrix G such that

G={ .2, , (3.1)

1. {x] denotes the greatest integer less than of equgl to x-



where the code iz the row space of G, and G is a kxn matrix
cf rank k. By usual matrix manipulations, we have the following

theorem.

Theorem 3.2: A generator matrizx G of an (n,k,d) linear

code can be given by the canonical form:

G=[ I, P 1, (3.2)

where I is a kxk unit matrix, and P is a X%({n-k) matrix.

Example 3.2: The generator matrices for the cedes given

by Example 2.1 and 2.2 are shown in Fig.3.2.

Let the data sequence of length k to be encoded be w,

then the corresponding codeword w is given by

eV Voo ey <wu, {3.3)

2=G

=[x Koo aeny M:u‘ . (3.4)

1’

where v
m

=X m=1,2,...,k, since G is composed of the kxk unit
matrix I. A code of this type is called a systematic code

as shown in Fig.3.3.

Definition 3.2: Two codes are eguivalent, if the

difference between them is only in the order of their coordinates.

Theorem 3.3: BEvery linear code is equivalent to a

systematic code.

Note that equivalent codes have the same capability of
error-correcticon. S0 we use the form-of {3.2) as G. If V
is an {n,k,d) linear code, then V is the nuil space of H
given by the following theorem, where nmeno.

Theorem 3.4: A parity check matrix # cf an {(n,k,d)

linear code can be given by

H=[ -P% , T 1, . (3.5

. T .
where I is an (n-k} *{n-k) unit matrix and P 1is a transposed

{n-k) xk matrix of P given by (3.2).

We can show that if G is the generator matrix for V,
then H is that for <_.ﬁ where <F igs the dual code of V. As
above discussion, we can get the codeword » by (3.4}). Let
us now decode the received seguence y into some codeword from

the (n,k,d) code by using the parity check matrix H.

Definition 3.3: The syndrome $ of y is given by

{3.6)
s=yH .

Letting x be transmitted and a noise vector e be added

by the channel, then we have

y=xte, (3.7
where
= F , m=1, 2, ..., n. (3.8)
e Amp. mw‘ et msv‘ mim GF(2), m A
Thus
s=yH = (%+e)H =eH . (3.9}

From (3.8), we can interpret s as the sum of the columns of H.

Example 3.3: Letting G and B be given by

[T 00110
G= (010101, (3.10)
1001111
(111100
H=11 01010 B {3.11)
te 11001
where
(1 10
P=110C Y|, (3.12)
L1 11
we have



$=(0 0 0) if e=(0,0,0,...,0)

’

=(1 1 0) if mHAH\DsO\...-OV Am..u.mv

‘

£=(1 0 1) 1if e={(0,1,0,...,0)

I

and s0 on. Therefore s cquals the m-th column of H, where mSHH.

Next, we now state an important thecrem which gives the
method for chcoosing the columns of the parity check wmatrix H

to obtain the minimum distance 4.

Thecrem 3.5: Consider an (n,k,d) binary linear code.
Then its parity check matrix B is an (n~k) xn matrix for
which any d-1 cor fewer columns are lineary independent over
GF(2) .

The proof of this theorem can be understood from the
derivation of Theorem 4.2 [G-V bound] described later,
However, we can casily proof it by the fact that if the sum
of d columns of H is zero, then there is a codeworgd of weight
d, =ince xmeuo. and the code is linear, where the weight of
a nonzero codeword x of the (n,k,d) code is at least d. This
suggests us that any d-1 or fewer error vector & satisfies
mme%o" wmsomSmom:oouhmndeHowmmHoEm%:Qﬂoam mnm:a. mm

g€'s are all distinct for corresponding error vectors e's.

Finally, we give the following.theorem to evaluate the
performance of the code.

Theorem 3.6: Let an (n,k,d) code be decoded by the
algorithm such that the decoder corrects any t or fewer errors;
otherwise the decoder will either fail to decode or decode
in error. Then the probability of correct decoding P over
the binary symmetric channel with cross-over probability p

is given by

(heta-p ", (3.14)

el
i
o ¢t

i

where t={(d-1}/2].

3.3. Hamming Codes

The binary Hamming code is the most important and the

best known code {9].

Definition 3.4: Consider a parity check matrix H which

has m rows and Nauw columns, where the column vectors are
all possible patterns of length m except the all 0 patterns.
The {(n,k,d) Hamming code is thus defined by H.

Theorem 3.7: 'The (n,k,d) Hamming code is capable of
correcting all single error, where the parameters are given

ags follows:

n=2"-1, (3.15.a)
k=2"-m-1, (3.15.b)
a=3. (3.15.c)

Example 3.4: The parity check matrix H of (7,4,3) Hamming

code is given by

10140
H=101190
001

01 .
11, (3.16)
0 11

O

where the columns of H are rearranged so that the syndrome
shows the location of en error. For example, if e=(0001600),

then s={(001).

Corollary 3.1: The (n,k,d) modified (or extended) Hamming
code is a single-error-correcting, double-error-detecting

code, whose parameters are given by

g™ (3.17.2)
k=2"m-1, _ €3.17.b)
d=4 (3.17.¢)

where the code can be obtained by adding to the original

Hamming code one parity check symbel.



IV. Error-Correction Capabilitv Bounds

In this section, we shall show some of upper and lower

bounds on error-correction capability.

If d4»2t+1, the code is capable of correct all patterns
of t or fewer errors. The number of patterns within t or
fewer errors for each of the M codewords is given by

n

duﬁ

n n
LHI )+

thus

T

(. (4.1)

n
I's
M<2/ :

i=0
Letting EUNW. we have the following theorem.

Theorem 4.1 [Hamming bound]: &Any {(n,k,2t+l} code satisfies
t

n-k > logl 1 (M)]. {4.2)
- 1=0

An asymptotic formula for (4.2) as n+w, is given by
l-k/n » H{t/n}, (4.3)
where we have used [2}
B]
lin Ylog T G

n -
n-+o 1=0

y=H({j/n). (4.4)

Definition 4.1: If a code satisfies {(4.2) with equality,

then the code is called perfect code.

Only the three following linear perfect codes are known:
(1) The repetition code [See Example 2.27,

f
i) The Hamming code [See Theorem 3.57,'
)

Example 4,1: Note that

1=2", (4.5}
_H, .
and P of the parity check matrix is shown in Fig.4.1.

-~ 11 -

The (23,12,7) Gelay code [10} [see following Example 4.1].

. (i .
From (3.8), letiing e be definced by

{1} (4.6)

i (4.7)

we have the following eguations to obtain the G-V bound of

Theorem 4.2.
(i} First, select arbitrarily the first nonzero column of H.

{ii} Second, it is possibkble teo cheoose the secend column of H

such that
e uTyo, t4.8.a)
wﬁmwmﬂwmﬁwvme. (4.8.b)
ir 277F 5 o,

{iii) Next, it is also peossible to choose the third column

of H such that

$ﬂuvmewo‘ (4.9.a)
mﬁuvmﬂxoﬂmvme. (4.9.b)
mﬁmumeerﬁuv+aﬁwuumeﬁ (4.9.c}

if 2" % g,
(iv) Finally, it is also possible to choose the n-th celumn

of H such that

e (M yTa, {4.10.a)

e M yTee 10T i°1,2,.. 0015 (4.10.b)

e M T2 e ()L lighy T iyei,=1,2,..0,n-1, (4.10.¢)
i Fis

e M Tyt ye o) e ig) )T, O (d10.a

iy0d,,1551,2,.. .01,

iFige 1pF1ge 14705

{ )

yut, (4.10.¢)
=1,2,...,n-1,

ety selass

P R



where HH. mwﬁ vy, MQ|H are all different from each
other, if

NBIWNUH+A:MH n-1

)+ (]

IR |

1
NV\ (4.10.1)

5|
QI
since any d-1 or fewer columns of H for an (n,%,3) code

are linearly independent. This is inversely the proof

of Theorem 3.5. Thus we have the follcowing theorem.

Theorem 4.2 [Gilbert-Varsharmov (G-V) bound]: It is

possible to construct an (n,k,d) codc which satisfies
d-2 nel

n-k > logl & ("T7)). E.HS
i=0

As the similar formula to (4.3), we have
1-k/nz=H{d/n}, (4.12}
where we have used {4.4) and

H{{(d-2)/(n-1)] = H(d/n}, {4.13)

as nr™,

Letting d=3, or t=1, we get m:lwwy+d from Thecrem 4.1
and simultaneously NSJst from Theorem 4.2. Therefore,
:Mwblxuw is the necessary and sufficient condition for t=1,
i.e., it coincides {3.15.a) with eguality, since Hamming code

is a perfect code.

These bounds together with another bounds are shown
in Fig.2.2.

V. Applications to Computer Storage System

The (n,k,d} modified Hamming codes are widely used for
nain storage system as single-error-correcting, double-error-
detecting (SEC/DED} code. Since usually k is chosen to be
a multiple of 8 (=byte}, the codes are shortened versions
of the modified Hamming code. By making the s leading information
symbols identically 0 and omitting them from codewords, we

always have an (n-s,k-s,d) code from an (n,k,d) code. Thus

we usually use
the (22,16,4) code,
the {39,32,4) code,
and the (72,64,4) code.

Next, letting the (22,16,4) code be chosen as an example,
we shall describe on the encoding and decoding process. Note
that such encoder and decoder have already been available
by a LSI {e.g., Am 296G, AMD Inc.[l1l]), which uses combinatorial
circuit because of high seed operation required for correcting
errors (e.g., the time required for detecting errers is only
30ns, and that for correcting errors, 50ns). Furthermore,
it is possible to get encoder and decoder for long code by

cascaded connection of LSI's.

The generator matrix G of the LSI is given by
G=[ 1, P ] (5.1}

where P is shown in Fig.5.1. The parity check H of this code
can be easily obtained from (3.5). Thus, as we :w&m already
shown as Examples 3.3 and 3.4, the syndrome can give information
where the error cccurs. The error correction table from the

syndrome is shown in Table 5.1.

Finally, we shall show an error characteristics of a
Dynamic RAM as an example [12]. Table 5.2. shows typical

error rate.

Random errcor correcting codes are used in main storage.
On the other hand, we can usually observe a characteristic
of a burst channel for external storage medium, such as a
magnetic disc and a magnetic tape. Therefore, burst error
correcting codes such as Fire codes are used for external

storage systems.



VI. Comments for Further Studies

This ncte is only an introduction, or the one of the
shortest course to ceding theory. There are many other

important codes, such as BCH codes, Reed-Solomon codes,

Goppa codes, and so on. For further studies, modern algebra

as a tool for researches are necessary; theory of group,

ring, ideal, field and especially of Galois field. Peterson's

book [2] is a little bit old but is still useful guide to

coding theory. The other books such as [3],[47,151,[61,[7],

and [8] are also recommended for reading. Recent surveies

[13],[14] are interesting for practical use.

[1}

(2]

[31

(4]

[€]

(71

{81

{10]

[11]

[12]
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Fig.l.2. & model of main storage system.
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Fig.2.2. Even parity check code (Even weight code).
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Fig.2.4. Error detection and correction.

010000001
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0001060601
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(i) Parity check code:G=

000000101
0Q0000011

{ii) Repetition code: G=1f1,1,1,1,1]

Fig.3.2. Generator matrices for examples.

Fig.3.1. ARddition and
multiplication for GF(2).
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Data symbols Check symbols

Fig.3.3. Codeword of systematic code.

[1P00111000111
101011211001
1011¢1101010
1011101106100
1100111011100
110101110001
1191100111010
L11¢01016110
111010100011
1111000601101

1011111111111 ]

T

Fig.4.1. P" of parity check matrix of the
(23,12,7) Golay code [7].
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Fig.4.2. Bounds on minimum distance [(asymptotic

distance ratio}[2].

Table 5.1.
ro 11100 The crror correction procedure
110100 from the syndrome {11].
wwmmpo s]Jo 1 0 1 ¢ 1 0 1
10 [
011010 mm c o 11 ¢ 0 1 1
100110 518583840 0 0 0 1 1 11
010110 000 #2221 T20 T T M
p= 0 01110;} 001 ng T TI1s T 14 9 T
116001 010 8 T T M T 13 7 T
101001 011 T11 5 T 1 T T M
011001 160 17 T T 15 T 12 & T
100101 101 TI10 4 T M T T M
010101 110 T & 3 T 2 T T M
001101 111 M T T M T M M T
100011 "
C00 1011 - no errors detected.
Nuriber - the locatiorn of the
single bhit-in-error.
Fig.5.1. The matrix of P[10]. T - two errors detected.
M - three or more errors detected.

muhmw.mm....Em 1.

6

Table 5.2.
Error characteristics of Dynamic RAM [12].
>

Bits/chip Typical error rate (%/107Hr)
Soft
1K 0.001
4K 0.02
16K 0,10
64K (predicted) 0.13

Soft errors: non-repeating, single-bit error.
Hard errors: permanent error.
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