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An Application of Coding Theory into Experimental Design

– Construction Methods for Unequal Orthogonal Arrays –
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Abstract— The relationship between coding theory and
the orthogonal arrays is discussed in terms of the theory of
Galois field. Since coding theory easily gives many codes
with large minimum distance, it is useful to construct the
orthogonal arrays with large strength which is applicable
to experiments with high order interaction effects between
factors. First, we review the result from the argument of
coding theory, and starting from complete design, orthogo-
nal design is introduced from the view-point of experimental
design. Next, correspondence of parameters between error-
correcting codes and orthogonal arrays is clarified. Finally,
by using the construction methods for unequal error pro-
tection codes, orthogonal arrays are extended to those with
unequal strength. Methods for constructing the orthogo-
nal arrays with unequal strength based on coding theory
is practically important, because most of all real problems
which we usually treat must assume that the interaction
effects between two or more factors of experiments are not
equal. If the model for experiments is given, we can at-
tain the same accuracy by the orthogonal design as that by
complete design with fewer experiments.

Keywords—Experimental design, Orthogonal array, Error-
correcting code, Galois field

1 Introduction
In the fundamentals in computer sciences, one of

the most important theory is coding theory, or the the-
ory of error-correcting codes (ECCs), which has the
history of almost a half century [Hira99]. Research
works in this area have been devoted and accumulated
to apply them into actual systems such as the com-
puter main memory, data transmission systems, deep
space communication systems, the compact disc (CD)
for music players, cellar phones and so on.

On the other hand, in the field of statistical data
analysis, the experimental design has contributed to
effectively analyze experimental data [Taka79]. Espe-
cially, orthogonal arrays (OAs) are important to con-
struct methods for experiments and to analyze the data
with taking into account of interaction effects between
factors [HSS99].

Many methods for constructing the OAs have been
given by techniques based on projective geometry (PG)
[Taka79]. They are useful to apply to experiments
with low order interaction effect, and they are diffi-
cult, however, to apply to those with higher one. Since
we can easily obtain many codes with large minimum
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distance by coding theory [PW71][MS77], it is effec-
tive to construct the OAs with large strength based on
ECCs, where the large minimum distance of the codes
corresponds to large strength of the OAs which can
treat high order interaction effects between factors of
the experiments. Note that the purpose of introducing
the OAs is to make the number of experiments reduce
without degradation in accuracy of the estimation of
parameters compared to complete design.

First, we show that there is a close relationship be-
tween the ECCs and the OAs through the theory of Ga-
lois field. Constructing methods for linear OAs given
by those for linear codes are discussed, and the corre-
spondence between parameters of the ECCs and those
of the OAs is clarified.

Based on an idea of unequal error protection codes
[MW67][Gils83], OAs are extended to those with un-
equal strength (UOAs) [SMH05]. If the model of the
experiments assumes that there do not exist the all of
interaction effects between L or fewer factors, then the
UOAs can effectively eliminate needless experiments.
The constructing algorithm for the UOAs is demon-
strated. We show a few examples of the UOAs.

In section 2, we describe brief introduction of error-
correcting codes, complete design, and orthogonal de-
sign. Section 3 discusses properties of error-correcting
codes and orthogonal arrays. The correspondence be-
tween them is also discussed. In section 4, a new con-
struction method for orthogonal arrays with unequal
strength is proposed based on that for unequal error
protection codes, and its examples are shown in section
5. Concluding remarks are stated and recent works and
further research are notified in section 6.

Throughout this paper, we discuss linear OAs and
UOAs with s level, where s is a prime power. Nonlinear
OAs and UOAs can be constructed by nonlinear codes
[HSS99][SMH05].

2 Preliminary
2.1 Error-Correcting Codes

In this section, we briefly review the results ob-
tained by coding theory [PW71][MS77][Hira83][Hira99].

2.1.1 Codes and Minimum Distance
Definition 2.1 Suppose a q-ary code of length n, num-
ber of information symbols k, and (designed) mini-
mum distance d denoted by an (n, k, d) code, then the
code consists of q-ary vectors x1, x2, · · · ,xM which are
called codewords, where

xm = (xm1, xm2, · · · , xmn), m = 1, 2, · · · ,M, (2.1)



and
d = min

m,m′(m6=m′)
DH(xm, xm′), (2.2)

DH(xm, xm′) = Σn
i=1dH(xmi, xmi′),

dH(a, b) =
{

0, a = b;
1, a 6= b,

and where q is a prime power. □

If the minimum distance of the code is not specified,
we denote the code as an (n, k) code. The rate r of the
(n, k, d) code is defined by r = k/n. M is the number
of coedwords.
2.1.2 Linear Codes

A linear code C has the following property:

∀xi, xj ∈ C, ∃x` = xi + xj ∈ C, (2.3)

A generator matrix of an (n, k, d) (linear) code is given
by

G =




x1

x2

...
xk


 , (2.4)

where x1, x2, · · · , xk are chosen to be mutually inde-
pendent, where the rank of G is k. By a combination
of row operations and column permutations, G can be
lead to echelon canonical form G′:

G′ = [Ik, P ], (2.5)

which generates equivalent systematic code to the code
C, where Ik denotes the identity matrix of dimension k.
Denote the information symbols by u = (u1, u2, · · · , uk),
then the codeword x is given by

x = uG. (2.6)

A parity check matrix H of the code C generated by
G′ is given by

H = [−PT, In−k]. (2.7)

Note that the following equation holds:

∀xm,xmHT = 0. (2.8)

To construct an (n, k, d) code, the following theorem is
important (See Appendix B [Hira83]).
Theorem 2.1 Let H be a parity check matrix of the
(n, k) code. The minimum distance of the code is at
least d, if and only if every combination of d − 1 or
fewer columns of H is linearly independent.1 □

For the later discussion, dual coeds must be defined.
Since the row space of generator matrix G gives sub-
space C of dimension k, its null space is a vector space
C⊥ of dimension n− k.
1 This condition is equivalent to that the sum of every combi-

nation of d− 1 or fewer columns is non-zero.

Definition 2.2 (Dual codes) Let a code C be a sub-
space of n-tuples, then a dual code C⊥ of a code C is
a null space of C. □
Note that the generator matrix G of the code C is the
parity check matrix H⊥ of the code C⊥(G = H⊥), and
similarly H = G⊥. If C is an (n, k) code, then C⊥ is
an (n, n− k) code.
2.1.3 BCH Codes and RS Codes

We already have many linear codes with various pa-
rameters of n, k, and d which can be easily constructed.
Theorem 2.2 (BCH code) Let the roots of a genera-
tor polynomial g(z) of the (n, k) BCH code over GF (q)
be αm0 , αm0+1, · · · , αm0+d−1, where m0 is any integer
and α, any element of GF (qm). Then the minimum
distance of the code is at least d. □
Theorem 2.3 (BCH bound) An (n, k, d) BCH code
over GF (q) has parameters such that:

n = qm − 1,

n− k ≤ m(d− 1). (2.9)

□
Corollary 2.1 (Binary BCH code bound) A binary
(n, k, d) BCH code has parameters such that:

n = 2m − 1,

n− k ≤ mb(d− 1)/2c, (2.10)

where bac implies the largest integer larger than or
equal to a. □
For an (n, k, d) BCH code over GF (q), letting m = 1,
and n = q − 1, we have RS code over GF (q).
Corollary 2.2 (RS code) An (n, k, d) RS code over
GF (q) has parameters satisfying:

n = q − 1,

k ≤ q − 1, (2.11)
d = n− k + 1.

□

2.2 Experimental Design
First, we give a simple example to show the cases

of experiments.
Example 2.1 (Experimental system) Let F1, F2, and F3

be factors which may affect a ratio y of defective product,
and let each factor have 2 levels, where F1, F2, and F3

correspond to the choice of materials, machines, and tem-
peratures, respectively as shown in Fig. 2.1.

□
Suppose that we want to analyze how the level of fac-
tors affects the ratio of defective products. In this ex-
ample, we assume that the model has three input fac-
tors with discrete variables and one output character-
istic with continuous variable2.
2 If all input factors are continuous variables, then the regression

analysis is applied, while input factors are composed of both

continuous and discrete variables, then the variance analysis

is used.
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Figure 2.1: A model of the experiment system

2.2.1 Complete Design
We usually assume a mode for experiments based

on hypothesis, assumption, or prior knowledge for the
experimental system. The model is represented by a
structure and its parameters, and is expressed by for-
mula.
Example 2.2 (Model of experimental system) In Exam-
ple 2.1 shown in Fig. 2.1, if we assume a model for which
the interaction effects have all combinations of 2 factors (the
2nd order interaction), then we have the following equation:

yν1,ν2,ν3 = µ + α1
ν1 + α2

ν2 + α3
ν3

+α1,2
ν1,ν2 + α1,3

ν1,ν3 + α2,3
ν2,ν3 + eν1,ν2,ν3 , (2.12)

(νi ∈ {0, 1}, i ∈ {1, 2, 3})

where yν1,ν2,ν3 is the ratio of defective products which is

given for level combination F 1
ν1F 2

ν2F 3
ν3 . In Eq.(2.12) µ is a

constant which has no relation with levels, and is called the

central effect. αi
νi

is the effect which appears when Fi is

set for νi, and is called the main effect of Fi. αi1,i2
νi1 ,νi2

is the

effect which appears by combining F i1
νi1

with F i2
νi2

, and is

called the interaction effect of Fi1Fi2 . eν1,ν2,ν3 is a random

error. □

The complete design always requires experiments with
all combinations of levels for each factor which is called
a complete array as shown in Table 2.1 for Example 2.1.

Table 2.1: Experiment conditions and data

Experiment no. F1 F2 F3 y [%]
1 0 0 0 0.5
2 0 0 1 0.4
3 0 1 0 0.1
4 0 1 1 0.1
5 1 0 0 1.2
6 1 0 1 1.5
7 1 1 0 0.7
8 1 1 1 0.6

We must estimate parameters from the output so
that maximum likelihood and minimum squire error
criteria are satisfied. For Example 2.2, we have the
following relations: For any i ∈ {1, 2, 3},

∑

νi∈{0,1}
αi

νi
= 0, (2.13)

and for any i1, i2 ∈ {1, 2, 3}, i1 6= i2,
∑

νi2∈{0,1}
αi1,i2

νi1 ,νi2
= 0 for ∀νi1 ∈ {0, 1}, (2.14)

∑

νi1∈{0,1}
αi1,i2

νi1 ,νi2
= 0 for ∀νi2 ∈ {0, 1}. (2.15)

Letting µ̂, α̂i
φ, α̂i1,i2

φ,ψ be a estimator of µ, αi
φ, αi1,i2

φ,ψ , the
estimation of parameters is completed by:

µ̂ =
1
8

∑

(ν1,ν2,ν3)∈{0,1}3
yν1,ν2,ν3 , (2.16)

α̂i
φ =

1
4

∑

(ν1,ν2,ν3)∈{0,1}3,νi=φ

yν1,ν2,ν3 − µ̂, (2.17)

and

α̂i1,i2
φ,ψ =

1
2

∑

(ν1, ν2, ν3) ∈ {0, 1}3,
νi1

= φ, νi2
= ψ

yν1,ν2,ν3 − µ̂− α̂i1
φ − α̂i2

ψ .

(2.18)

For example, α̂1
0 = 1

4 (y0,0,0 + y0,0,1 + y0,1,0 + y0,1,1)− µ̂
is calculated as follows:

y0,0,0 = µ + α1
0 + α2

0 + α3
0 + α1,2

0,0 + α1,3
0,0 + α2,3

0,0 + e0,0,0,

y0,0,1 = µ + α1
0 + α2

0 + α3
1 + α1,2

0,0 + α1,3
0,1 + α2,3

0,1 + e0,0,1,

y0,1,0 = µ + α1
0 + α2

1 + α3
0 + α1,2

0,1 + α1,3
0,0 + α2,3

1,0 + e0,1,0,

y0,1,1 = µ + α1
0 + α2

1 + α3
1 + α1,2

0,1 + α1,3
0,1 + α2,3

1,1 + e0,1,1,

α̂1
0 = (µ− µ̂) + α1

0 + ē1
0,

where ē1
0 = 1

4 (e0,0,0 + e0,0,1 + e0,1,0 + e0,1,1). This is be-
cause we assumed Eqs.(2.13), (2.14) and (2.15). When
the output y for each experiment is given as Table 2.1,
an estimated value of y is calculated as shown in Ap-
pendix A.
2.2.2 Orthogonal Design

The orthogonal design is used to reduce the number
of experiments depending on a model of experiments,
which is assumed usually by prior knowledge of objec-
tive systems.
Definition 2.3 [HSS99] An M × n array A with ele-
ments from GF (s) is said to be an Orthogonal Array
with s levels and strength τ , if every M × τ subar-
ray of A contains each τ -tuple based on GF (s) exactly
same times as row. We will denote such an array by
OA(M, n, s, τ). □
Example 2.3 In Example 2.1 shown in Fig. 2.1, if we
assume no interaction effect for all factors (the 1st order
interaction), then we have the following equation:

yν1,ν2,ν3 = µ + α1
ν1 + α2

ν2 + α3
ν3 + eν1,ν2,ν3 .

In this case, OA(4, 3, 2, 2) as shown in Table 2.2 is enough

to estimate parameters, hence the number of experiments

decreases. Table 2.2 is called an orthogonal array for Ex-

ample 2.1. □



Table 2.2: Experiment conditions and data

Experimental no. F1 F2 F3 y(%)
1 0 0 0 0.5
2 0 1 1 0.1
3 1 0 1 1.5
4 1 1 0 0.7

The estimation of parameters is also followed:

µ̂ =
1
|Ā|

∑

(ν1,ν2,ν3)∈Ā

yν1,ν2,ν3 , (2.19)

α̂i
φ =

1
|Āi

φ|
∑

(ν1,ν2,ν3)∈Āi
φ

yν1,ν2,ν3 − µ̂, (2.20)

where Ā is the set of the rows of OA(4, 3, 2, 2) and
Āi

φ = {(ν1, ν2, ν3)|(ν1, ν2, ν3) ∈ Ā, νi = φ}. For exam-
ple, α̂1

0 = 1
2 (y000 + y011)− µ̂ is given as follows:

y0,0,0 = µ + α1
0 + α2

0 + α3
0 + e0,0,0,

y0,1,1 = µ + α1
0 + α2

1 + α3
1 + e0,1,1,

α̂1
0 = (µ− µ̂) + α1

0 + ē1
0,

where, ē1
0 = 1

2 (e0,0,0 + e0,1,1). This is because we as-
sumed Eq.(2.13).

Let F1, F2, . . . , Fn denote the n factors to be in-
cluded in the experiment. We assume that each factor
has s levels, so we can describe the set of levels as
GF (s), where s is a prime power.

1. Case τ = 2 (the 1st order interaction)
If we can assume that there is no interaction ef-
fect, we have

yν1,ν2,...,νn = µ + α1
ν1

+ α2
ν2

+ . . . + αn
νn

+eν1,ν2,...,νn , (2.21)

we can reduce the number of experiments by us-
ing an OA with strength τ = 2, i.e., OA(M, n, s, 2).
When we use an OA to experimental design, each
column corresponds to the factor in the experi-
ment, and each row, to the level combination of
the factors.

2. Case τ = 2-4 (the 1st and the 2nd order interac-
tion)
We consider some interaction effects of two fac-
tors. Let I ⊂ {1, 2, . . . , n}2 be the set whose ele-
ment is a pair of indices of two factors in which
there may be interaction effect. When we can
assume that

yν1,ν2,...,νn = µ + α1
ν1

+ α2
ν2

+ . . . + αn
νn

+
∑

(i1,i2)∈I

αi1,i2
νi1 ,νi2

+ . . . + eν1,ν2,...,νn ,(2.22)

we need an M × n array A which satisfies the
following three conditions;

(1) The array A has strength 2.
(2) The array A partially has strength 3, that

is, for any i1, i2 ((i1, i2) ∈ I), every M × 3
subarray, which contains two columns that
correspond to Fi1 and Fi2 , contains each 3-
tuple based on GF (s) exactly same times as
row.

(3) The array A partially has strength 4, that is,
for any i1, i2, i3, i4 ((i1, i2), (i3, i4) ∈ I), M×
4 subarrays, which contains four columns
that correspond to Fi1 , Fi2 , Fi3 , and Fi4 ,
contains each 4-tuple based on GF (s) ex-
actly same times as row.

In the special case, if there are all interaction ef-
fects of two factors, we need an OA with strength
4. Generally, if there are all interaction effects of
L factors, we need an OA with strength τ = 2L.

Definition 2.4 (L-th order interaction model) Let there
exist the interaction effects of all combinations of ` fac-
tors for ` = 1, 2, · · · , L, then a model is called the L-th
order interaction model, where the following equation
holds:

yν1,ν2,...,νn = µ +
∑

i1∈{1,2,...,n}
αi1

νi1

+
∑

(i1,i2)∈{1,2,...,n}2
αi1,i2

νi1 ,νi2
+ . . .

+
∑

(i1,i2,...,iL)∈{1,2,...,n}L

αi1,i2,...,iL
νi1 ,νi2 ,...,νiL

+eν1,ν2,...,νn , (2.23)

□

If L = 0, then y is represented by only a central effect µ
(and a random error) . If L = 1, then y is represented
by µ and main effects αs.

Theorem 2.4 If an experiment system is assumed to
be the L-th order interaction model, then the optimum
experimental design is given by OA(M, n, s, 2L). □

Our problem to be solved is to derive the smallest
M for given n, s, and t.

3 Error-Correcting Codes(ECCs) and Or-

thogonal Arrays(OAs)
3.1 Properties of Orthogonal Arrays

In the following, unless mentioned explicitly, we
will consider the case that s = 2 for simplicity. An
OA(M, n, 2, τ) is said to be linear if the rows of OA(M,
n, 2, τ) form a linear vector space. If an OA(M, n, 2, τ)
is linear, OA(M, n, 2, τ) has a basis for the linear vector
space. This basis is given in the form of (log2 M) × n
matrix called a generator matrix.

Theorem 3.1 [HSS99] Let A be an M×n linear array
with binary elements, and G be a generator matrix of
A. Then A is an OA(M, n, 2, τ) if and only if any τ
columns of G are linearly independent over GF (2). □



Theorem 3.2 [HSS99] An M×n array A with binary
elements is an OA(M, n, 2, τ) if and only if

∑

v:row of A

(−1)w · vT
= 0,

for all binary vectors w of length n containing w 1’s,
for all w in the range 1 ≤ w ≤ τ , where the sum is over
all rows v of A. □

3.2 Orthogonal Arrays and Error-Correcting
Codes

Let WH(w) be the Hamming weight of a vector
w = (w1, w2, . . . , wn). We consider the case of q = 2
as well as OAs.

C is said to be linear if C is a linear vector subspace.
If C is linear, C has the dual code C⊥. Let d⊥ be the
minimal distance of C⊥. Then d⊥ is said to be the dual
distance of C.

Theorem 3.3 [HSS99] If C is a binary (n, k, d) code
over GF (2) with dual distance d⊥, then the codewords
of C form the rows of an OA(M, n, 2, d⊥ − 1). Con-
versely, the rows of a linear OA(M, n, 2, τ) form an
(n, k, d) linear code over GF (2) with dual distance d⊥ ≥
τ + 1. If the OA has strength τ but not τ + 1, then
d⊥ = τ + 1 hold. □

Example 3.1 Let C = {000, 011, 101, 110}. This is a bi-

nary (3, 2, 2) code. Then C⊥ = {000, 111}, so the dual

distance of C d⊥ = 3. Therefore, the OA corresponding to

the code C, that is in Table 2.2, is an OA(4, 3, 2, 2). □

3.3 Correspondence between ECCs and OAs
Let G be a k×n matrix over GF (2) which generates

an OA(M,n, 2, τ). Then any τ columns of G are lin-
early independent over GF (2). While a code generated
by the parity check matrix G is the dual code C⊥ of
the code C which is generated by the generator matrix
G. From Theorems 3.1 and 3.3, we have the Table 3.1
which shows a correspondence of parameters between
ECCs and OAs. Technical terms and symbols (vari-
ables) are used which are generally used in each field.
If there is no confusing, we use the same symbols.

3.4 OAs from ECCs
(1) Binary Hamming codes

A binary (n, k, d) Hamming code is a class of the
binary BCH codes with d = 3, hence its parity check
matrix is given by a (n− k)×n matrix whose columns
consist of all distinct non-zero vectors over GF (2).
Example 3.2 A parity check matrix H of the (7, 4, 3)
Hamming code is given by:

H =

[
1 0 1 1 1 0 0
1 1 0 1 0 1 0
1 1 1 0 0 0 1

]
(3.1)

then we have a generator matrix G:

G =




1 0 0 0 1 1 1
0 1 0 0 0 1 1
0 0 1 0 1 0 1
0 0 0 1 1 1 0


 (3.2)

A dual code C⊥ of the code C is a maximum length se-

quence (7, 3, 4) code. □

Generally, a dual code of the (n, k, 3) Hamming code C
is a (n, n−k, 2n−k−1) code C⊥ [HSS99]. We then have
OA(2n−k, n, 2, 2) from the code C⊥, and OA(2k, n, 2,
2n−k−1 − 1).
(2) RS codes

The parameters of an (n, k, d) RS code over GF (q)
(q > 2) are given by Eq.(2.11). Since all RS code are
MDS codes, d = n− k − 1 holds.

Theorem 3.4 [HSS99] Let code C be an (n, τ, n−τ +
1) RS code over GF (q) which forms OA(sτ , n, s, τ).
Then the dual code C⊥ is an (n, n− τ, τ + 1) RS code
which forms OA(sn−τ , n, s, n − τ), where q = s is a
prime power. □

4 Unequal Error Protection Codes

(UEPCs) and Orthogonal Arrays with

Unequal Strength (UOAs)
4.1 Orthogonal Arrays with Unequal Strength
Definition 4.1 An M×n array A with elements from
GF (s) is said to be an OA with s levels and strength
τ = (τ1, τ2, . . . , τn) if every M×τi subarray of A, which
contains i-th column of A, contains each τi-tuple based
on {0, 1} exactly same times as row. We will denote
such an array by OA(M, n, 2, τ ). Then we will call an
OA(M, n, 2, τ ) OA with unequal strength if the com-
ponents of τ are not mutually equal. □

When OA(M, n, 2, (τ1, τ2, . . . , τn)) is applied to ex-
perimental design, we can estimate the interaction ef-
fects of at most b τi

2 c factors which contains i-th factor.
There are many cases that UOAs reduce more numbers
of experiments than OAs with equal strength. For ex-
ample, let F1, F2 and F3 be the factors to be included
in the experiment. Suppose we know that there are the
interaction effects of F1F2 and F1F3 but not F2F3. If
an OA(M1, 3, 2, 4) is used, we can estimate not only the
interaction effects of F1F2, F1F3 but F2F3, although we
need not estimate the interaction effect of F2F3. On the
other hand, If an OA(M2, 3, 2, (4, 2, 2)) is used, we can
not estimate the interaction effect of F2F3. Therefore,
UOA can reduce the number of experiments.

4.2 UOAs and UEPCs
The separation (d1, d2, . . . , dn) of linear code C is

defined by

di = min{dist(u, v) | u = (u1, u2, . . . , un),
v = (v1, v2, . . . , vn),u,v ∈ C, ui 6= vi},

for i = 1, 2, . . . , n.

If a linear code C has the separation whose components
are not mutually equal, the code C is called an unequal
error protection codes. Let (d⊥1 , d⊥2 , . . . , d⊥n ) be the sep-
aration of C⊥ which is the dual code of C. Then we
will call (d⊥1 , d⊥2 , . . . , d⊥n ) the dual separation of C.



Table 3.1: Correspondence of parameters between ECCs and OAs
ECCs OAs Notes

# of codewords: M # of experiments (runs): M
Codewords:x1, x2, · · · ,xM Array A = (v1

T,v2
T, · · · , vM

T)T x = v
Alphabet size: q # of levels: s p = s
Code length: n # of factors: n

Dual distance d⊥ strength: τ τ = d⊥ − 1

Theorem 4.1 If C is a binary (n, k, d) code over GF (2)
with dual separation (d⊥1 , d⊥2 , . . . , d⊥n ), then the code-
words of C form the row of an OA(2k, n, 2, (d⊥1 −1, d⊥2 −
1, . . . , d⊥n −1)). Conversely, the rows of a linear OA(M,
n, 2, (τ1, τ2, . . . , τn)) form an (n, log2 M, d)2 linear code
over GF (2) with dual separation (d⊥1 , d⊥2 , . . . , d⊥n ), where
d⊥i ≥ τi + 1, i = 1, 2, . . . , n. If the OA has strength τi

but not τi + 1, d⊥i = τi + 1 (i = 1, 2, . . . , n). □

We show two construction methods of UOAs. These
are derived from UEPCs.

Construction Method 1 Let there be two generator
matrices of OAs; G1 is the generator matrix for a lin-
ear OA(M1, n1, 2, τ), and G2 is the one for a linear
OA(M2, n2, 2, τ ′), where τ ′ ≤ τ . Let G1 and G2 be
joined as submatrices of G where G1 and G2 overlap,
as shown in Fig.4.1. The OA with generator matrix G
is a (M1M2)× (n1 + n2−n0L) array. Let n0L ≤ τ ′/2.

G = 

G1

G2

n1

n0L

n2

0

0

G = 

G1

G2

n1

n0L

n2

0

0

Figure 4.1: Construction method of UOA

Theorem 4.2 An OA by Construction Method 1 is an
OA(M1M2, n1 + n2 − n0L, 2, (τ1, τ2, . . . , τn)), where

τi ≥ τ (i = 1, 2, . . . , n1 − n0L),
τi ≥ τ ′ (i = n1 + 1, n1 + 2, . . . , n1 + n2 + n0L),
τi ≥ τ + τ ′ − n0L (i = n1 − n0L + 1, . . . , n1).

□

Construction Method 2 Let α denote a primitive
element of the field GF (22m). Then β = α2m+1 is a
primitive element of the field GF (2m) which is a sub-
field of the field GF (22m). Consider an OA with 2
levels which have the generator matrix

G =
[

1 α · · · α2m
α2m+1 α2m+2 · · · α22m−2

1 0 · · · 0 β3 0 · · · 0

]
.

(4.1)

The OA with generator matrix G is a 23m × (22m − 1)
array, and its strength is at least 2.

Theorem 4.3 Let m be an odd integer. Then the OA
with the generator matrix in (4.1) is an OA(23m, (22m−
1), 2, (τ1, τ2, . . . , τn)), where

τi = 4 (i = 1 + j(2m + 1), j = 0, 1, . . . , 2m − 2),
τi ≥ 2 (otherwise).

□

5 Examples of UOAs
In this section, we show some examples of UOAs by

Construction Method 1 and 2. And we compare them
with optimal OAs with equal strength.

Firstly, we compare the following OAs;
• (Equal) optimal M × n OAs with 2 levels and

equal strength 4 that is in [HSS99] (n = 11, 12,
. . . , 32).

• (Method 1) M × n OAs with 2 levels and par-
tially strength 4 by Construction Method 1 (n =
11, 12, . . . , 32): G1 in Construction Method 1 is
a generator matrix for an optimal M1×n1 linear
OA with 2 levels and equal strength 3 that is in
[HSS99] (n1 = 9, 10, . . . , 30), G2 is a generator
matrix for a linear OA(4, 3, 2, 2), and n0L = 1.

The number of rows of each OA is shown in Table 5.1.
Then, the number of rows of UOAs by Construction
Method 1 is fewer than that of OAs with equal strength
at many n’s. Therefore, these UOAs can reduce more
number of experiments than OAs with equal strength
under partial interaction effects.

Next, we compare the following OAs;
• The OA with equal strength that has generator

matrix

G =

[
1 α · · · α2m+1 · · · α22m−2

1 α2 · · · α2m+1+2 · · · α22m+1−4

]
.

This is an OA(4096, 63, 2, 4). This OA is derived
from BCH codes.

• The UOA with by Construction Method 2, where
let m = 3 in Construction Method 2. This is
OA(512, 63, 2, (τ1, τ2, . . . , τ63)), where τi = 4 (i =
1 + 9j, j = 0, 1, . . . , 6), τi ≥ 2 (otherwise).

Then, the number of rows of the UOA by Construc-
tion Method 2 is fewer than that of the OA with equal
strength. Therefore, the UOA can reduce more number



Table 5.1: The number of rows of OAs
n Equal Method 1
16 256 128
17 256 128
18 256 128
19 256 256
20 512 256
21 512 256
22 512 256
23 512 256
24 1024 256
25 1024 256
26 1024 256
27 1024 256
28 1024 256
29 1024 256
30 1024 256
31 1024 256
32 1024 256

of experiments than the OA with equal strength under
partial interaction effects.

6 Concluding Remarks
We have discussed the construction methods of or-

thogonal arrays from those of error correcting codes.
The relation between them is also clarified. Although
coding theory and orthogonal arrays have analogous
problems, the subjects have studied almost separately.
As future discussions, powerful extension to non-linear
cases and mixed orthogonal effect cases are remained.
An approach by projective geometry to construct or-
thogonal arrays is also necessary.
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Appendix A
We show how to calculate an estimated value of y,

when complete design and orthogonal design are used.
(1) Complete design

In Example.2.1, we assume the model

yν1,ν2,ν3 = µ + α1
ν1

+ α2
ν2

+ α3
ν3

+α1,2
ν1,ν2

+ α1,3
ν1,ν3

+ α2,3
ν2,ν3

+ eν1,ν2,ν3 ,

(νi ∈ {0, 1}, i ∈ {1, 2, 3}),

and the output y for each experiment is given as Table
2.1. Then, by Eqs.(2.16) and (2.17),

µ̂ = 0.500
α̂1

0 = −0.225, α̂2
0 = 0.125, α̂3

0 = 0.100,

α̂1
1 = 0.225, α̂2

1 = −0.125, α̂3
1 = −0.100.

and by Eq.(2.18),

α̂1,2
0,0 = 0.000, α̂1,3

0,0 = −0.025, α̂2,3
0,0 = 0.025,

α̂1,2
1,0 = 0.000, α̂1,3

1,0 = 0.025, α̂2,3
1,0 = −0.025,

α̂1,2
0,1 = 0.000, α̂1,3

0,1 = 0.025, α̂2,3
0,1 = −0.025,

α̂1,2
1,1 = 0.000, α̂1,3

1,1 = −0.025, α̂2,3
1,1 = 0.025.

And, the estimated value of y is as follows.

ŷν1,ν2,ν3 = µ̂ + α̂1
ν1

+ α̂2
ν2

+ α̂3
ν3

+α̂1,2
ν1,ν2

+ α̂1,3
ν1,ν3

+ α̂2,3
ν2,ν3

,

(νi ∈ {0, 1}, i ∈ {1, 2, 3}).

(2) Orthogonal design
In Example.2.1, we assume the model

yν1,ν2,ν3 = µ + α1
ν1

+ α2
ν2

+ α3
ν3

+ eν1,ν2,ν3 ,

(νi ∈ {0, 1}, i ∈ {1, 2, 3}).



and the output y for each experiment is given as Table
2.2. Then by Eqs.(2.19) and (2.20),

µ̂ = 0.500
α̂1

0 = −0.200, α̂2
0 = 0.100, α̂3

0 = 0.100,

α̂1
1 = 0.200, α̂2

1 = −0.100, α̂3
1 = −0.100.

And, the estimated value of y is as follows.

ŷν1,ν2,ν3 = µ̂ + α̂1
ν1

+ α̂2
ν2

+ α̂3
ν3

(νi ∈ {0, 1}, i ∈ {1, 2, 3}).
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