An Application of Coding Theory into Experimental Design
 - Construction Methods for Unequal Orthogonal Arrays -

Shigeichi Hirasawa *

Abstract

The relationship between coding theory and the orthogonal arrays is discussed in terms of the theory of Galois field. Since coding theory easily gives many codes with large minimum distance, it is useful to construct the orthogonal arrays with large strength which is applicable to experiments with high order interaction effects between factors. First, we review the result from the argument of coding theory, and starting from complete design, orthogonal design is introduced from the view-point of experimental design. Next, correspondence of parameters between errorcorrecting codes and orthogonal arrays is clarified. Finally, by using the construction methods for unequal error protection codes, orthogonal arrays are extended to those with unequal strength. Methods for constructing the orthogonal arrays with unequal strength based on coding theory is practically important, because most of all real problems which we usually treat must assume that the interaction effects between two or more factors of experiments are not equal. If the model for experiments is given, we can attain the same accuracy by the orthogonal design as that by complete design with fewer experiments.

Keywords-Experimental design, Orthogonal array, Errorcorrecting code, Galois field

1 Introduction

In the fundamentals in computer sciences, one of the most important theory is coding theory, or the theory of error-correcting codes (ECCs), which has the history of almost a half century [Hira99]. Research works in this area have been devoted and accumulated to apply them into actual systems such as the computer main memory, data transmission systems, deep space communication systems, the compact disc (CD) for music players, cellar phones and so on.

On the other hand, in the field of statistical data analysis, the experimental design has contributed to effectively analyze experimental data [Taka79]. Especially, orthogonal arrays (OAs) are important to construct methods for experiments and to analyze the data with taking into account of interaction effects between factors [HSS99].

Many methods for constructing the OAs have been given by techniques based on projective geometry (PG) [Taka79]. They are useful to apply to experiments with low order interaction effect, and they are difficult, however, to apply to those with higher one. Since we can easily obtain many codes with large minimum

[^0]distance by coding theory [PW71][MS77], it is effective to construct the OAs with large strength based on ECCs, where the large minimum distance of the codes corresponds to large strength of the OAs which can treat high order interaction effects between factors of the experiments. Note that the purpose of introducing the OAs is to make the number of experiments reduce without degradation in accuracy of the estimation of parameters compared to complete design.

First, we show that there is a close relationship between the ECCs and the OAs through the theory of Galois field. Constructing methods for linear OAs given by those for linear codes are discussed, and the correspondence between parameters of the ECCs and those of the OAs is clarified.

Based on an idea of unequal error protection codes [MW67][Gils83], OAs are extended to those with unequal strength (UOAs) [SMH05]. If the model of the experiments assumes that there do not exist the all of interaction effects between L or fewer factors, then the UOAs can effectively eliminate needless experiments. The constructing algorithm for the UOAs is demonstrated. We show a few examples of the UOAs.

In section 2, we describe brief introduction of errorcorrecting codes, complete design, and orthogonal design. Section 3 discusses properties of error-correcting codes and orthogonal arrays. The correspondence between them is also discussed. In section 4, a new construction method for orthogonal arrays with unequal strength is proposed based on that for unequal error protection codes, and its examples are shown in section 5. Concluding remarks are stated and recent works and further research are notified in section 6 .

Throughout this paper, we discuss linear OAs and UOAs with s level, where s is a prime power. Nonlinear OAs and UOAs can be constructed by nonlinear codes [HSS99][SMH05].

2 Preliminary

2.1 Error-Correcting Codes

In this section, we briefly review the results obtained by coding theory [PW71][MS77][Hira83][Hira99].

2.1.1 Codes and Minimum Distance

Definition 2.1 Suppose a q-ary code of length n, number of information symbols k, and (designed) minimum distance d denoted by an (n, k, d) code, then the code consists of q-ary vectors $\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{M}$ which are called codewords, where

$$
\begin{equation*}
\boldsymbol{x}_{\boldsymbol{m}}=\left(x_{m 1}, x_{m 2}, \cdots, x_{m n}\right), m=1,2, \cdots, M \tag{2.1}
\end{equation*}
$$

and

$$
\begin{gather*}
d=\min _{m, m^{\prime}\left(m \neq m^{\prime}\right)} D_{H}\left(x_{m}, x_{m^{\prime}}\right), \tag{2.2}\\
D_{H}\left(\boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{x}_{\boldsymbol{m}^{\prime}}\right)=\Sigma_{i=1}^{n} d_{H}\left(x_{m i}, x_{m i^{\prime}}\right), \\
d_{H}(a, b)= \begin{cases}0, & a=b ; \\
1, & a \neq b,\end{cases}
\end{gather*}
$$

and where q is a prime power.
If the minimum distance of the code is not specified, we denote the code as an (n, k) code. The rate r of the (n, k, d) code is defined by $r=k / n . M$ is the number of coedwords.

2.1.2 Linear Codes

A linear code C has the following property:

$$
\begin{equation*}
\forall \boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{x}_{\boldsymbol{j}} \in C, \exists \boldsymbol{x}_{\ell}=\boldsymbol{x}_{\boldsymbol{i}}+\boldsymbol{x}_{\boldsymbol{j}} \in C \tag{2.3}
\end{equation*}
$$

A generator matrix of an (n, k, d) (linear) code is given by

$$
G=\left[\begin{array}{c}
x_{1} \tag{2.4}\\
x_{2} \\
\vdots \\
x_{k}
\end{array}\right]
$$

where $\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{k}}$ are chosen to be mutually independent, where the rank of G is k. By a combination of row operations and column permutations, G can be lead to echelon canonical form G^{\prime} :

$$
\begin{equation*}
G^{\prime}=\left[I_{k}, P\right] \tag{2.5}
\end{equation*}
$$

which generates equivalent systematic code to the code C, where I_{k} denotes the identity matrix of dimension k. Denote the information symbols by $\boldsymbol{u}=\left(u_{1}, u_{2}, \cdots, u_{k}\right)$, then the codeword \boldsymbol{x} is given by

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{u} G \tag{2.6}
\end{equation*}
$$

A parity check matrix H of the code C generated by G^{\prime} is given by

$$
\begin{equation*}
H=\left[-P^{\mathrm{T}}, I_{n-k}\right] \tag{2.7}
\end{equation*}
$$

Note that the following equation holds:

$$
\begin{equation*}
\forall \boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{x}_{\boldsymbol{m}} H^{\mathrm{T}}=0 \tag{2.8}
\end{equation*}
$$

To construct an (n, k, d) code, the following theorem is important (See Appendix B [Hira83]).
Theorem 2.1 Let H be a parity check matrix of the (n, k) code. The minimum distance of the code is at least d, if and only if every combination of $d-1$ or fewer columns of H is linearly independent. ${ }^{1}$

For the later discussion, dual coeds must be defined. Since the row space of generator matrix G gives subspace C of dimension k, its null space is a vector space C^{\perp} of dimension $n-k$.

[^1]Definition 2.2 (Dual codes) Let a code C be a subspace of n-tuples, then a dual code C^{\perp} of a code C is a null space of C.
Note that the generator matrix G of the code C is the parity check matrix H^{\perp} of the code $C^{\perp}\left(G=H^{\perp}\right)$, and similarly $H=G^{\perp}$. If C is an (n, k) code, then C^{\perp} is an ($n, n-k$) code.

2.1.3 BCH Codes and RS Codes

We already have many linear codes with various parameters of n, k, and d which can be easily constructed.
Theorem 2.2 (BCH code) Let the roots of a generator polynomial $g(z)$ of the $(n, k) \mathrm{BCH}$ code over $G F(q)$ be $\alpha^{m_{0}}, \alpha^{m_{0}+1}, \cdots, \alpha^{m_{0}+d-1}$, where m_{0} is any integer and α, any element of $G F\left(q^{m}\right)$. Then the minimum distance of the code is at least d.
Theorem 2.3 (BCH bound) An $(n, k, d) \mathrm{BCH}$ code over $G F(q)$ has parameters such that:

$$
\begin{gather*}
n=q^{m}-1 \\
n-k \leq m(d-1) \tag{2.9}
\end{gather*}
$$

Corollary 2.1 (Binary BCH code bound) A binary $(n, k, d) \mathrm{BCH}$ code has parameters such that:

$$
\begin{gather*}
n=2^{m}-1, \\
n-k \leq m\lfloor(d-1) / 2\rfloor \tag{2.10}
\end{gather*}
$$

where $\lfloor a\rfloor$ implies the largest integer larger than or equal to a.
For an (n, k, d) BCH code over $G F(q)$, letting $m=1$, and $n=q-1$, we have RS code over $G F(q)$.
Corollary 2.2 (RS code) An $(n, k, d) \mathrm{RS}$ code over $G F(q)$ has parameters satisfying:

$$
\begin{array}{r}
n=q-1, \\
k \leq q-1, \tag{2.11}\\
d=n-k+1 .
\end{array}
$$

2.2 Experimental Design

First, we give a simple example to show the cases of experiments.
Example 2.1 (Experimental system) Let F_{1}, F_{2}, and F_{3} be factors which may affect a ratio y of defective product, and let each factor have 2 levels, where F_{1}, F_{2}, and F_{3} correspond to the choice of materials, machines, and temperatures, respectively as shown in Fig. 2.1.

Suppose that we want to analyze how the level of factors affects the ratio of defective products. In this example, we assume that the model has three input factors with discrete variables and one output characteristic with continuous variable ${ }^{2}$.

[^2]

Figure 2.1: A model of the experiment system

2.2.1 Complete Design

We usually assume a mode for experiments based on hypothesis, assumption, or prior knowledge for the experimental system. The model is represented by a structure and its parameters, and is expressed by formula.
Example 2.2 (Model of experimental system) In Example 2.1 shown in Fig. 2.1, if we assume a model for which the interaction effects have all combinations of 2 factors (the 2 nd order interaction), then we have the following equation:

$$
\begin{align*}
& y_{\nu_{1}, \nu_{2}, \nu_{3}}=\mu+\alpha_{\nu_{1}}^{1}+\alpha_{\nu_{2}}^{2}+\alpha_{\nu_{3}}^{3} \\
& \quad+\alpha_{\nu_{1}, \nu_{2}}^{1,2}+\alpha_{\nu_{1}, \nu_{3}}^{1,3}+\alpha_{\nu_{2}, \nu_{3}}^{2,3}+e_{\nu_{1}, \nu_{2}, \nu_{3}}, \tag{2.12}\\
& \left(\nu_{i} \in\{0,1\}, \quad i \in\{1,2,3\}\right)
\end{align*}
$$

where $y_{\nu_{1}, \nu_{2}, \nu_{3}}$ is the ratio of defective products which is given for level combination $F_{\nu_{1}}^{1} F_{\nu_{2}}^{2} F_{\nu_{3}}^{3}$. In Eq.(2.12) μ is a constant which has no relation with levels, and is called the central effect. $\alpha_{\nu_{i}}^{i}$ is the effect which appears when F_{i} is set for ν_{i}, and is called the main effect of $F_{i} . \alpha_{\nu_{1}}^{i_{1}, i_{2}, \nu_{i_{2}}}$ is the effect which appears by combining $F_{\nu_{i_{1}}}^{i_{1}}$ with $F_{\nu_{i_{2}}}^{i_{2}}$, and is called the interaction effect of $F_{i_{1}} F_{i_{2}} . e_{\nu_{1}, \nu_{2}, \nu_{3}}$ is a random error.
The complete design always requires experiments with all combinations of levels for each factor which is called a complete array as shown in Table 2.1 for Example 2.1.

Table 2.1: Experiment conditions and data

Experiment no.	F_{1}	F_{2}	F_{3}	$y[\%]$
1	0	0	0	0.5
2	0	0	1	0.4
3	0	1	0	0.1
4	0	1	1	0.1
5	1	0	0	1.2
6	1	0	1	1.5
7	1	1	0	0.7
8	1	1	1	0.6

We must estimate parameters from the output so that maximum likelihood and minimum squire error criteria are satisfied. For Example 2.2, we have the following relations: For any $i \in\{1,2,3\}$,

$$
\begin{equation*}
\sum_{\nu_{i} \in\{0,1\}} \alpha_{\nu_{i}}^{i}=0 \tag{2.13}
\end{equation*}
$$

and for any $i_{1}, i_{2} \in\{1,2,3\}, i_{1} \neq i_{2}$,

$$
\begin{align*}
\sum_{\nu_{i_{2}} \in\{0,1\}} \alpha_{\nu_{i_{1}}, \nu_{i_{2}}}^{i_{1}, i_{2}}=0 & \text { for } \forall \nu_{i_{1}} \in\{0,1\}, \tag{2.14}\\
\sum_{\nu_{i_{1}} \in\{0,1\}} \alpha_{\nu_{i_{1}}, \nu_{i_{2}}}^{i_{1}, i_{2}}=0 & \text { for } \forall \nu_{i_{2}} \in\{0,1\} . \tag{2.15}
\end{align*}
$$

Letting $\hat{\mu}, \hat{\alpha}_{\phi}^{i}, \hat{\alpha}_{\phi, \psi}^{i_{1}, i_{2}}$ be a estimator of $\mu, \alpha_{\phi}^{i}, \alpha_{\phi, \psi}^{i_{1}, i_{2}}$, the estimation of parameters is completed by:

$$
\begin{array}{r}
\hat{\mu}=\frac{1}{8} \sum_{\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in\{0,1\}^{3}} y_{\nu_{1}, \nu_{2}, \nu_{3}}, \\
\hat{\alpha}_{\phi}^{i}=\frac{1}{4} \sum_{\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in\{0,1\}^{3}, \nu_{i}=\phi} y_{\nu_{1}, \nu_{2}, \nu_{3}}-\hat{\mu}, \tag{2.17}
\end{array}
$$

and

$$
\begin{equation*}
\hat{\alpha}_{\phi, \psi}^{i_{1}, i_{2}}=\frac{1}{2} \sum_{\substack{\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in\{0,1\}^{3}, \nu_{2}, \nu_{3} \\ \nu_{i_{1}}=\phi, \nu_{i}=\psi}} y_{\nu_{2}}-\hat{\mu}-\hat{\alpha}_{\phi}^{i_{1}}-\hat{\alpha}_{\psi}^{i_{2}} . \tag{2.18}
\end{equation*}
$$

For example, $\hat{\alpha}_{0}^{1}=\frac{1}{4}\left(y_{0,0,0}+y_{0,0,1}+y_{0,1,0}+y_{0,1,1}\right)-\hat{\mu}$ is calculated as follows:

$$
\begin{aligned}
& y_{0,0,0}=\mu+\alpha_{0}^{1}+\alpha_{0}^{2}+\alpha_{0}^{3}+\alpha_{0,0}^{1,2}+\alpha_{0,0}^{1,3}+\alpha_{0,0}^{2,3}+e_{0,0,0}, \\
& y_{0,0,1}=\mu+\alpha_{0}^{1}+\alpha_{0}^{2}+\alpha_{1}^{3}+\alpha_{0,0}^{1,2}+\alpha_{0,1}^{1,3}+\alpha_{0,1}^{2,3}+e_{0,0,1}, \\
& y_{0,1,0}=\mu+\alpha_{0}^{1}+\alpha_{1}^{2}+\alpha_{0}^{3}+\alpha_{0,1}^{1,2}+\alpha_{0,0}^{1,3}+\alpha_{1,0}^{2,3}+e_{0,1,0}, \\
& y_{0,1,1}=\mu+\alpha_{0}^{1}+\alpha_{1}^{2}+\alpha_{1}^{3}+\alpha_{0,1}^{1,2}+\alpha_{0,1}^{1,3}+\alpha_{1,1}^{2,3}+e_{0,1,1} \\
& \hat{\alpha}_{0}^{1}=(\mu-\hat{\mu})+\alpha_{0}^{1} \\
& +e_{0}^{1},
\end{aligned}
$$

where $\bar{e}_{0}^{1}=\frac{1}{4}\left(e_{0,0,0}+e_{0,0,1}+e_{0,1,0}+e_{0,1,1}\right)$. This is because we assumed Eqs.(2.13), (2.14) and (2.15). When the output y for each experiment is given as Table 2.1, an estimated value of y is calculated as shown in Appendix A.

2.2.2 Orthogonal Design

The orthogonal design is used to reduce the number of experiments depending on a model of experiments, which is assumed usually by prior knowledge of objective systems.
Definition 2.3 [HSS99] An $M \times n$ array A with elements from $G F(s)$ is said to be an Orthogonal Array with s levels and strength τ, if every $M \times \tau$ subarray of A contains each τ-tuple based on $G F(s)$ exactly same times as row. We will denote such an array by $O A(M, n, s, \tau)$.
Example 2.3 In Example 2.1 shown in Fig. 2.1, if we assume no interaction effect for all factors (the 1st order interaction), then we have the following equation:

$$
y_{\nu_{1}, \nu_{2}, \nu_{3}}=\mu+\alpha_{\nu 1}^{1}+\alpha_{\nu_{2}}^{2}+\alpha_{\nu_{3}}^{3}+e_{\nu_{1}, \nu_{2}, \nu_{3}} .
$$

In this case, $O A(4,3,2,2)$ as shown in Table 2.2 is enough to estimate parameters, hence the number of experiments decreases. Table 2.2 is called an orthogonal array for Example 2.1.

Table 2.2: Experiment conditions and data

Experimental no.	F_{1}	F_{2}	F_{3}	$\mathrm{y}(\%)$
1	0	0	0	0.5
2	0	1	1	0.1
3	1	0	1	1.5
4	1	1	0	0.7

The estimation of parameters is also followed:

$$
\begin{align*}
\hat{\mu} & =\frac{1}{|\bar{A}|} \sum_{\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in \bar{A}} y_{\nu_{1}, \nu_{2}, \nu_{3}}, \tag{2.19}\\
\hat{\alpha}_{\phi}^{i} & =\frac{1}{\left|\bar{A}_{\phi}^{i}\right|} \sum_{\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in \bar{A}_{\phi}^{i}} y_{\nu_{1}, \nu_{2}, \nu_{3}}-\hat{\mu}, \tag{2.20}
\end{align*}
$$

where \bar{A} is the set of the rows of $O A(4,3,2,2)$ and $\bar{A}_{\phi}^{i}=\left\{\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \mid\left(\nu_{1}, \nu_{2}, \nu_{3}\right) \in \bar{A}, \nu_{i}=\phi\right\}$. For example, $\hat{\alpha}_{0}^{1}=\frac{1}{2}\left(y_{000}+y_{011}\right)-\hat{\mu}$ is given as follows:

$$
\begin{aligned}
& y_{0,0,0}=\mu+\alpha_{0}^{1}+\alpha_{0}^{2}+\alpha_{0}^{3}+e_{0,0,0} \\
& y_{0,1,1}=\mu+\alpha_{0}^{1}+\alpha_{1}^{2}+\alpha_{1}^{3}+e_{0,1,1} \\
& \hat{\alpha}_{0}^{1}=(\mu-\hat{\mu})+\alpha_{0}^{1}+\bar{e}_{0}^{1}
\end{aligned}
$$

where, $\bar{e}_{0}^{1}=\frac{1}{2}\left(e_{0,0,0}+e_{0,1,1}\right)$. This is because we assumed Eq.(2.13).

Let $F_{1}, F_{2}, \ldots, F_{n}$ denote the n factors to be included in the experiment. We assume that each factor has s levels, so we can describe the set of levels as $G F(s)$, where s is a prime power.

1. Case $\tau=2$ (the 1st order interaction)

If we can assume that there is no interaction effect, we have

$$
\begin{array}{r}
y_{\nu_{1}, \nu_{2}, \ldots, \nu_{n}}=\mu+\alpha_{\nu_{1}}^{1}+\alpha_{\nu_{2}}^{2}+\ldots+\alpha_{\nu_{n}}^{n} \\
+e_{\nu_{1}, \nu_{2}, \ldots, \nu_{n}} \tag{2.21}
\end{array}
$$

we can reduce the number of experiments by using an OA with strength $\tau=2$, i.e., $O A(M, n, s, 2)$. When we use an OA to experimental design, each column corresponds to the factor in the experiment, and each row, to the level combination of the factors.
2. Case $\tau=2-4$ (the 1 st and the 2 nd order interaction)
We consider some interaction effects of two factors. Let $I \subset\{1,2, \ldots, n\}^{2}$ be the set whose element is a pair of indices of two factors in which there may be interaction effect. When we can assume that

$$
\begin{align*}
& y_{\nu_{1}, \nu_{2}, \ldots, \nu_{n}}=\mu+\alpha_{\nu_{1}}^{1}+\alpha_{\nu_{2}}^{2}+\ldots+\alpha_{\nu_{n}}^{n} \\
& \quad+\sum_{\left(i_{1}, i_{2}\right) \in I} \alpha_{\nu_{i_{1}}, \nu_{i_{2}}}^{i_{1}, 2_{2}}+\ldots+e_{\nu_{1}, \nu_{2}, \ldots, \nu_{n}}, \tag{2.22}
\end{align*}
$$

we need an $M \times n$ array A which satisfies the following three conditions;
(1) The array A has strength 2.
(2) The array A partially has strength 3 , that is, for any $i_{1}, i_{2}\left(\left(i_{1}, i_{2}\right) \in I\right)$, every $M \times 3$ subarray, which contains two columns that correspond to $F_{i_{1}}$ and $F_{i_{2}}$, contains each 3tuple based on $G F(s)$ exactly same times as row.
(3) The array A partially has strength 4 , that is, for any $i_{1}, i_{2}, i_{3}, i_{4}\left(\left(i_{1}, i_{2}\right),\left(i_{3}, i_{4}\right) \in I\right), M \times$ 4 subarrays, which contains four columns that correspond to $F_{i_{1}}, F_{i_{2}}, F_{i_{3}}$, and $F_{i_{4}}$, contains each 4 -tuple based on $G F(s)$ exactly same times as row.
In the special case, if there are all interaction effects of two factors, we need an OA with strength 4. Generally, if there are all interaction effects of L factors, we need an OA with strength $\tau=2 L$.
Definition 2.4 (L-th order interaction model) Let there exist the interaction effects of all combinations of ℓ factors for $\ell=1,2, \cdots, L$, then a model is called the L-th order interaction model, where the following equation holds:

$$
\begin{align*}
y_{\nu_{1}, \nu_{2}, \ldots, \nu_{n}} & =\mu+\sum_{i_{1} \in\{1,2, \ldots, n\}} \alpha_{\nu_{i_{1}}}^{i_{1}} \\
& +\sum_{\left(i_{1}, i_{2}\right) \in\{1,2, \ldots, n\}^{2}} \alpha_{\nu_{i_{1}}, \nu_{i_{2}}}^{i_{1}, i_{2}}+\ldots \\
& +\sum_{\left(i_{1}, i_{2}, \ldots, i_{L}\right) \in\{1,2, \ldots, n\}^{L}} \alpha_{\nu_{i_{1}, \nu_{i_{2}}, \ldots, \nu_{i}}}^{i_{1}, i_{2}, \ldots, i_{L}} \\
& +e_{\nu_{1}, \nu_{2}, \ldots, \nu_{n}} \tag{2.23}
\end{align*}
$$

If $L=0$, then y is represented by only a central effect μ (and a random error). If $L=1$, then y is represented by μ and main effects α s.
Theorem 2.4 If an experiment system is assumed to be the L-th order interaction model, then the optimum experimental design is given by $O A(M, n, s, 2 L)$.

Our problem to be solved is to derive the smallest M for given n, s, and t.

3 Error-Correcting Codes(ECCs) and Orthogonal Arrays(OAs)

3.1 Properties of Orthogonal Arrays

In the following, unless mentioned explicitly, we will consider the case that $s=2$ for simplicity. An $O A(M, n, 2, \tau)$ is said to be linear if the rows of $O A(M$, $n, 2, \tau)$ form a linear vector space. If an $O A(M, n, 2, \tau)$ is linear, $O A(M, n, 2, \tau)$ has a basis for the linear vector space. This basis is given in the form of $\left(\log _{2} M\right) \times n$ matrix called a generator matrix.
Theorem 3.1 [HSS99] Let A be an $M \times n$ linear array with binary elements, and G be a generator matrix of A. Then A is an $O A(M, n, 2, \tau)$ if and only if any τ columns of G are linearly independent over $G F(2)$.

Theorem 3.2 [HSS99] An $M \times n$ array A with binary elements is an $O A(M, n, 2, \tau)$ if and only if

$$
\sum_{\boldsymbol{v}: \text { row of A }}(-1)^{\boldsymbol{w} \cdot \boldsymbol{v}^{\mathrm{T}}=0, ~}
$$

for all binary vectors \boldsymbol{w} of length n containing w 1's, for all w in the range $1 \leq w \leq \tau$, where the sum is over all rows \boldsymbol{v} of A.

3.2 Orthogonal Arrays and Error-Correcting Codes

Let $W_{H}(\boldsymbol{w})$ be the Hamming weight of a vector $\boldsymbol{w}=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$. We consider the case of $q=2$ as well as OAs.
C is said to be linear if C is a linear vector subspace. If C is linear, C has the dual code C^{\perp}. Let d^{\perp} be the minimal distance of C^{\perp}. Then d^{\perp} is said to be the dual distance of C.
Theorem 3.3 [HSS99] If C is a binary (n, k, d) code over $G F(2)$ with dual distance d^{\perp}, then the codewords of C form the rows of an $O A\left(M, n, 2, d^{\perp}-1\right)$. Conversely, the rows of a linear $O A(M, n, 2, \tau)$ form an (n, k, d) linear code over $G F(2)$ with dual distance $d^{\perp} \geq$ $\tau+1$. If the OA has strength τ but not $\tau+1$, then $d^{\perp}=\tau+1$ hold.
Example 3.1 Let $C=\{000,011,101,110\}$. This is a binary $(3,2,2)$ code. Then $C^{\perp}=\{000,111\}$, so the dual distance of $C d^{\perp}=3$. Therefore, the OA corresponding to the code C, that is in Table 2.2, is an $O A(4,3,2,2)$.

3.3 Correspondence between ECCs and OAs

Let G be a $k \times n$ matrix over $G F(2)$ which generates an $O A(M, n, 2, \tau)$. Then any τ columns of G are linearly independent over $G F(2)$. While a code generated by the parity check matrix G is the dual code C^{\perp} of the code C which is generated by the generator matrix G. From Theorems 3.1 and 3.3, we have the Table 3.1 which shows a correspondence of parameters between ECCs and OAs. Technical terms and symbols (variables) are used which are generally used in each field. If there is no confusing, we use the same symbols.

3.4 OAs from ECCs

(1) Binary Hamming codes

A binary (n, k, d) Hamming code is a class of the binary BCH codes with $d=3$, hence its parity check matrix is given by a $(n-k) \times n$ matrix whose columns consist of all distinct non-zero vectors over $G F(2)$.
Example 3.2 A parity check matrix H of the $(7,4,3)$ Hamming code is given by:

$$
H=\left[\begin{array}{lllllll}
1 & 0 & 1 & 1 & 1 & 0 & 0 \tag{3.1}\\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

then we have a generator matrix G :

$$
G=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \tag{3.2}\\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{array}\right]
$$

A dual code C^{\perp} of the code C is a maximum length sequence $(7,3,4)$ code.
Generally, a dual code of the $(n, k, 3)$ Hamming code C is a $\left(n, n-k, 2^{n-k-1}\right)$ code C^{\perp} [HSS99]. We then have $O A\left(2^{n-k}, n, 2,2\right)$ from the code C^{\perp}, and $O A\left(2^{k}, n, 2\right.$, $\left.2^{n-k-1}-1\right)$.
(2) RS codes

The parameters of an (n, k, d) RS code over $G F(q)$ $(q>2)$ are given by Eq.(2.11). Since all RS code are MDS codes, $d=n-k-1$ holds.

Theorem 3.4 [HSS99] Let code C be an $(n, \tau, n-\tau+$ 1) RS code over $G F(q)$ which forms $O A\left(s^{\tau}, n, s, \tau\right)$. Then the dual code C^{\perp} is an $(n, n-\tau, \tau+1)$ RS code which forms $O A\left(s^{n-\tau}, n, s, n-\tau\right)$, where $q=s$ is a prime power.

4 Unequal Error Protection Codes (UEPCs) and Orthogonal Arrays with Unequal Strength (UOAs)

4.1 Orthogonal Arrays with Unequal Strength

Definition 4.1 An $M \times n$ array A with elements from $G F(s)$ is said to be an OA with s levels and strength $\boldsymbol{\tau}=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)$ if every $M \times \tau_{i}$ subarray of A, which contains i-th column of A, contains each τ_{i}-tuple based on $\{0,1\}$ exactly same times as row. We will denote such an array by $O A(M, n, 2, \boldsymbol{\tau})$. Then we will call an $O A(M, n, 2, \boldsymbol{\tau})$ OA with unequal strength if the components of $\boldsymbol{\tau}$ are not mutually equal.

When $O A\left(M, n, 2,\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)\right)$ is applied to experimental design, we can estimate the interaction effects of at most $\left\lfloor\frac{\tau_{i}}{2}\right\rfloor$ factors which contains i-th factor. There are many cases that UOAs reduce more numbers of experiments than OAs with equal strength. For example, let F_{1}, F_{2} and F_{3} be the factors to be included in the experiment. Suppose we know that there are the interaction effects of $F_{1} F_{2}$ and $F_{1} F_{3}$ but not $F_{2} F_{3}$. If an $O A\left(M_{1}, 3,2,4\right)$ is used, we can estimate not only the interaction effects of $F_{1} F_{2}, F_{1} F_{3}$ but $F_{2} F_{3}$, although we need not estimate the interaction effect of $F_{2} F_{3}$. On the other hand, If an $O A\left(M_{2}, 3,2,(4,2,2)\right)$ is used, we can not estimate the interaction effect of $F_{2} F_{3}$. Therefore, UOA can reduce the number of experiments.

4.2 UOAs and UEPCs

The separation $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of linear code C is defined by

$$
\begin{array}{r}
d_{i}=\min \left\{\operatorname{dist}(\boldsymbol{u}, \boldsymbol{v}) \mid \boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right)\right. \\
\left.\boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right), \boldsymbol{u}, \boldsymbol{v} \in C, u_{i} \neq v_{i}\right\} \\
\text { for } \quad i=1,2, \ldots, n .
\end{array}
$$

If a linear code C has the separation whose components are not mutually equal, the code C is called an unequal error protection codes. Let $\left(d_{1}^{\perp}, d_{2}^{\perp}, \ldots, d_{n}^{\perp}\right)$ be the separation of C^{\perp} which is the dual code of C. Then we will call $\left(d_{1}^{\perp}, d_{2}^{\perp}, \ldots, d_{n}^{\perp}\right)$ the dual separation of C.

Table 3.1: Correspondence of parameters between ECCs and OAs

ECCs	OAs	Notes
\# of codewords: M	\# of experiments $($ runs $): M$	
Codewords: $\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{\mathbf{2}}, \cdots, \boldsymbol{x}_{\boldsymbol{M}}$	Array $A=\left(\boldsymbol{v}_{\mathbf{1}}{ }^{\mathrm{T}}, \boldsymbol{v}_{\mathbf{2}}{ }^{\mathrm{T}}, \cdots, \boldsymbol{v}_{\boldsymbol{M}}{ }^{\mathrm{T}}\right)^{\mathrm{T}}$	$\boldsymbol{x}=\boldsymbol{v}$
Alphabet size: q	\# of levels: s	$p=s$
Code length: n	\# of factors: n	
Dual distance d^{\perp}	strength: τ	$\tau=d^{\perp}-1$

Theorem 4.1 If C is a binary (n, k, d) code over $G F(2)$ with dual separation $\left(d_{1}^{\perp}, d_{2}^{\perp}, \ldots, d_{n}^{\perp}\right)$, then the codewords of C form the row of an $O A\left(2^{k}, n, 2,\left(d_{1}^{\perp}-1, d_{2}^{\perp}-\right.\right.$ $\left.\left.1, \ldots, d_{n}^{\perp}-1\right)\right)$. Conversely, the rows of a linear $O A(M$, $\left.n, 2,\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)\right)$ form an $\left(n, \log _{2} M, d\right)_{2}$ linear code over $G F(2)$ with dual separation $\left(d_{1}^{\perp}, d_{2}^{\perp}, \ldots, d_{n}^{\perp}\right)$, where $d_{i}^{\perp} \geq \tau_{i}+1, i=1,2, \ldots, n$. If the OA has strength τ_{i} but not $\tau_{i}+1, d_{i}^{\perp}=\tau_{i}+1(i=1,2, \ldots, n)$.

We show two construction methods of UOAs. These are derived from UEPCs.
Construction Method 1 Let there be two generator matrices of OAs; G_{1} is the generator matrix for a linear $O A\left(M_{1}, n_{1}, 2, \tau\right)$, and G_{2} is the one for a linear $O A\left(M_{2}, n_{2}, 2, \tau^{\prime}\right)$, where $\tau^{\prime} \leq \tau$. Let G_{1} and G_{2} be joined as submatrices of G where G_{1} and G_{2} overlap, as shown in Fig.4.1. The OA with generator matrix G is a $\left(M_{1} M_{2}\right) \times\left(n_{1}+n_{2}-n_{0 L}\right)$ array. Let $n_{0 L} \leq \tau^{\prime} / 2$.

Figure 4.1: Construction method of UOA
Theorem 4.2 An OA by Construction Method 1 is an $O A\left(M_{1} M_{2}, n_{1}+n_{2}-n_{0 L}, 2,\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)\right)$, where

$$
\begin{aligned}
& \tau_{i} \geq \tau \quad\left(i=1,2, \ldots, n_{1}-n_{0 L}\right) \\
& \tau_{i} \geq \tau^{\prime} \quad\left(i=n_{1}+1, n_{1}+2, \ldots, n_{1}+n_{2}+n_{0 L}\right) \\
& \tau_{i} \geq \tau+\tau^{\prime}-n_{0 L} \quad\left(i=n_{1}-n_{0 L}+1, \ldots, n_{1}\right)
\end{aligned}
$$

Construction Method 2 Let α denote a primitive element of the field $G F\left(2^{2 m}\right)$. Then $\beta=\alpha^{2^{m}+1}$ is a primitive element of the field $G F\left(2^{m}\right)$ which is a subfield of the field $G F\left(2^{2 m}\right)$. Consider an OA with 2 levels which have the generator matrix
$G=\left[\begin{array}{cccccccc}1 & \alpha & \cdots & \alpha^{2^{m}} & \alpha^{2^{m}}+1 & \alpha^{2^{m}}+2 & \cdots & \alpha^{2^{2 m}-2} \\ 1 & 0 & \cdots & 0 & \beta^{3} & 0 & \cdots & 0\end{array}\right]$.

The OA with generator matrix G is a $2^{3 m} \times\left(2^{2 m}-1\right)$ array, and its strength is at least 2 .
Theorem 4.3 Let m be an odd integer. Then the OA with the generator matrix in (4.1) is an $O A\left(2^{3 m},\left(2^{2 m}-\right.\right.$ $\left.1), 2,\left(\tau_{1}, \tau_{2}, \ldots, \tau_{n}\right)\right)$, where

$$
\begin{aligned}
& \tau_{i}=4 \quad\left(i=1+j\left(2^{m}+1\right), j=0,1, \ldots, 2^{m}-2\right) \\
& \tau_{i} \geq 2 \text { (otherwise) }
\end{aligned}
$$

5 Examples of UOAs

In this section, we show some examples of UOAs by Construction Method 1 and 2. And we compare them with optimal OAs with equal strength.

Firstly, we compare the following OAs;

- (Equal) optimal $M \times n$ OAs with 2 levels and equal strength 4 that is in [HSS99] $(n=11,12$, ..., 32).
- (Method 1) $M \times n$ OAs with 2 levels and partially strength 4 by Construction Method 1 ($n=$ $11,12, \ldots, 32$): G_{1} in Construction Method 1 is a generator matrix for an optimal $M_{1} \times n_{1}$ linear OA with 2 levels and equal strength 3 that is in [HSS99] $\left(n_{1}=9,10, \ldots, 30\right), G_{2}$ is a generator matrix for a linear $O A(4,3,2,2)$, and $n_{0 L}=1$.
The number of rows of each OA is shown in Table 5.1. Then, the number of rows of UOAs by Construction Method 1 is fewer than that of OAs with equal strength at many n 's. Therefore, these UOAs can reduce more number of experiments than OAs with equal strength under partial interaction effects.

Next, we compare the following OAs;

- The OA with equal strength that has generator matrix

$$
G=\left[\begin{array}{cccccc}
1 & \alpha & \cdots & \alpha^{2^{m}+1} & \cdots & \alpha^{2^{2 m}-2} \\
1 & \alpha^{2} & \cdots & \alpha^{2^{m+1}+2} & \cdots & \alpha^{2^{2 m+1}-4}
\end{array}\right]
$$

This is an $O A(4096,63,2,4)$. This OA is derived from BCH codes.

- The UOA with by Construction Method 2, where let $m=3$ in Construction Method 2. This is $O A\left(512,63,2,\left(\tau_{1}, \tau_{2}, \ldots, \tau_{63}\right)\right)$, where $\tau_{i}=4(i=$ $1+9 j, j=0,1, \ldots, 6), \tau_{i} \geq 2$ (otherwise).
Then, the number of rows of the UOA by Construction Method 2 is fewer than that of the OA with equal strength. Therefore, the UOA can reduce more number

Table 5.1: The number of rows of OAs

n	Equal	Method 1
16	256	128
17	256	128
18	256	128
19	256	256
20	512	256
21	512	256
22	512	256
23	512	256
24	1024	256
25	1024	256
26	1024	256
27	1024	256
28	1024	256
29	1024	256
30	1024	256
31	1024	256
32	1024	256

of experiments than the OA with equal strength under partial interaction effects.

6 Concluding Remarks

We have discussed the construction methods of orthogonal arrays from those of error correcting codes. The relation between them is also clarified. Although coding theory and orthogonal arrays have analogous problems, the subjects have studied almost separately. As future discussions, powerful extension to non-linear cases and mixed orthogonal effect cases are remained. An approach by projective geometry to construct orthogonal arrays is also necessary.

Acknowledgement

The author would like to thank Mr. T. Saito for his valuable support to write this paper.

This work was partially supported by Waseda University Grant for Special Research Project no:2005B189.

References

[Gils83] W. J. Van Gils, "Two Topics on Linear Unequal Error Protection Codes: Bounds on Their Length and Cyclic Codes Classes," IEEE Trans. Inform. Theory, vol.IT-29, no.6, pp.866-876, Nov. 1983.
[Hira83] S.Hirasawa, "Introduction to coding theory and some applications," Seminar on Information Systems Taipei, R.O.C., Aug. 1983.
[Hira99] S. Hirasawa, Introduction to Coding Theory (in Japanese), Baifukan, Tokyo, 1999.
[HSS99] A. S. Hedayat, N. J. A. Sloane, and J. Stafken, Orthogonal Arrays -Theory and Applications-, Springer, NY, 1999.
[MS77] F. J. MacWilliams, and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland, Amsterdam, North-Holland Pub. Co., Netherlands, 1979.
[MW67] B. Masnic, and J. k. Wolf, "On linear unequal error protection codes ," IEEE Trans. Infrom. Theory, vol.IT-3, no.4, pp.600-607, Oct. 1967.
[PW71] W. W. Peterson, and E. J. Weldon, Jr. Error Correcting Codes, 2nd ed., The MIT Press, Cambridge, MA, 1971.
[SMH05] T. Saito, T. Matstushima, and S. Hirasawa, "A note on construction of orthogonal arrays with unequal strength from error-correcting codes," to appear in IEICE Trans. Fundamentals.
[Taka79] I. Takahashi, Combinatorial Theory and its Applications (in Japanese),Chapter 2, Iwanamishoten, Tokyo, 1979.

Appendix A

We show how to calculate an estimated value of y, when complete design and orthogonal design are used.
(1) Complete design

In Example.2.1, we assume the model

$$
\begin{aligned}
& y_{\nu_{1}, \nu_{2}, \nu_{3}}= \mu+\alpha_{\nu_{1}}^{1}+\alpha_{\nu_{2}}^{2}+\alpha_{\nu_{3}}^{3} \\
& \quad+\alpha_{\nu_{1}, \nu_{2}}^{1,2}+\alpha_{\nu_{1}, \nu_{3}}^{1,3}+\alpha_{\nu_{2}, \nu_{3}}^{2,3}+e_{\nu_{1}, \nu_{2}, \nu_{3}} \\
& \quad\left(\nu_{i} \in\{0,1\}, i \in\{1,2,3\}\right)
\end{aligned}
$$

and the output y for each experiment is given as Table 2.1. Then, by Eqs.(2.16) and (2.17),

$$
\begin{array}{ll}
\hat{\mu}=0.500 \\
\hat{\alpha}_{0}^{1}=-0.225, & \hat{\alpha}_{0}^{2}=0.125, \\
\hat{\alpha}_{1}^{1}=0.225, \quad \hat{\alpha}_{0}^{3}=0.100 \\
\hat{\alpha}_{1}^{2}=-0.125, & \hat{\alpha}_{1}^{3}=-0.100
\end{array}
$$

and by Eq.(2.18),

$$
\begin{array}{lll}
\hat{\alpha}_{0,0}^{1,2}=0.000, & \hat{\alpha}_{0,0}^{1,3}=-0.025, & \hat{\alpha}_{0,0}^{2,3}=0.025 \\
\hat{\alpha}_{1,0}^{1,2}=0.000, & \hat{\alpha}_{1,0}^{1,3}=0.025, & \hat{\alpha}_{1,0}^{2,3}=-0.025 \\
\hat{\alpha}_{0,1}^{1,2}=0.000, & \hat{\alpha}_{0,1}^{1,3}=0.025, & \hat{\alpha}_{0,1}^{2,3}=-0.025 \\
\hat{\alpha}_{1,1}^{1,2}=0.000, & \hat{\alpha}_{1,1}^{1,3}=-0.025, & \hat{\alpha}_{1,1}^{2,3}=0.025
\end{array}
$$

And, the estimated value of y is as follows.

$$
\begin{aligned}
\hat{y}_{\nu_{1}, \nu_{2}, \nu_{3}}=\hat{\mu}+ & \hat{\alpha}_{\nu_{1}}^{1} \\
& +\hat{\alpha}_{\nu_{2}}^{2}+\hat{\alpha}_{\nu_{3}}^{3} \\
& +\hat{\alpha}_{\nu_{1}, \nu_{2}}^{1,2}+\hat{\alpha}_{\nu_{1}, \nu_{3}}^{1,3}+\hat{\alpha}_{\nu_{2}, \nu_{3}}^{2,3} \\
\left(\nu_{i} \in\{0,1\},\right. & i \in\{1,2,3\})
\end{aligned}
$$

(2) Orthogonal design

In Example.2.1, we assume the model

$$
\begin{array}{r}
y_{\nu_{1}, \nu_{2}, \nu_{3}}=\mu+\alpha_{\nu_{1}}^{1}+\alpha_{\nu_{2}}^{2}+\alpha_{\nu_{3}}^{3}+e_{\nu_{1}, \nu_{2}, \nu_{3}}, \\
\quad\left(\nu_{i} \in\{0,1\}, i \in\{1,2,3\}\right) .
\end{array}
$$

and the output y for each experiment is given as Table
2.2. Then by Eqs.(2.19) and (2.20),

$$
\begin{aligned}
& \hat{\mu}=0.500 \\
& \hat{\alpha}_{0}^{1}=-0.200, \quad \hat{\alpha}_{0}^{2}=0.100, \quad \hat{\alpha}_{0}^{3}=0.100 \\
& \hat{\alpha}_{1}^{1}=0.200, \quad \hat{\alpha}_{1}^{2}=-0.100, \quad \hat{\alpha}_{1}^{3}=-0.100
\end{aligned}
$$

And, the estimated value of y is as follows.

$$
\begin{aligned}
\hat{y}_{\nu_{1}, \nu_{2}, \nu_{3}} & =\hat{\mu}+\hat{\alpha}_{\nu_{1}}^{1}+\hat{\alpha}_{\nu_{2}}^{2}+\hat{\alpha}_{\nu_{3}}^{3} \\
\left(\nu_{i}\right. & \in\{0,1\}, \quad i \in\{1,2,3\}) .
\end{aligned}
$$

Appendix B : An Introduction to Coding Theory and some Applications

[^3]

CODING THEORY AND ITS RECENT TOPICS
The table of contents of this lecture note is shown
as follows: along with the discussions. topics on both codes and their generalizations are also given theory, especially Shannon's channel coding theorem. Recent and product code is described connecting with information systems are given. In Part II, a survey on concatenated codes applications of error correcting code to computer storage The algebraic structures for linear codes are focused. Then

Summary

$$
\begin{aligned}
& \text { кұт̦ләatun eqəsem }
\end{aligned}
$$

emesexth thotobetus
Coding Theory and Its Recent Topics

7xed
Part I : An Introduction to Coding Theory and Some Applications

s7407400

 suotzeotididy zuos pue
Krooyw butpos of uoţonpoxfur u甘

$$
\left.\begin{array}{lll}
\cdot q \neq E & \prime \tau \\
: q=e & & 0
\end{array}\right]=(q \cdot e)^{H} p
$$

$$
(2.3)
$$

 block code. We assume that symbols from the source and to
the sink are binary. In this note, however, we restrict our discussions to only the

7еч7

Consider two binary vectors x_{i} and x_{j} of length n such is called block codes and the other, convolutional codes
storage systems are described in Section V. Section VI is IV. Some applications of error correcting codes to computer capability of codes are reviewed as bounds in Section

$$
x_{j}=\left(x_{1}^{(j)}, x_{2}^{(j)}, \ldots, x_{n}^{(j)}\right),
$$

səṭ|euturtizad -II comments for further studies. linear codes are discussed in Section III. Error correction theory are shown. As the most important class of codes, some notations, definitions, and concepts used for coding
The Hamming distance

$$
\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & \quad \mathrm{~S}=\mathrm{U} & \text { IOF }
\end{array}
$$

 (2.3) for the non-binary code. The other distance function, the vectors differ among n symbols. It is also defined by
 .

$$
\begin{aligned}
& \text { Kq pautyop ST x azex ә૫山 }
\end{aligned}
$$

 $(6 \cdot 2) \quad, \partial=\left(\mathbb{K}^{\prime}, f_{x}\right)^{\mathrm{H}_{\mathrm{p}}}$
 channel (BSC) with p is assumed, , If binary symmetric
$\max _{j} \operatorname{Pr}\left(y / x_{j}\right)$.
If $i \neq j$, a dec
such that transmitted and y be received. Then the maximum likelihood of the (n, k, d) code be used equally likely. And let x_{i} be 11 discuss the decoding rule.
Definition 2.4: Let all of
Example 2.2 for length $n=5$ can correct 2 errors. Next, we
shall discuss the decoding rule. speaking all odd number of errors. The repetetion code of parity code of Example 2.1 can detect one error, exactly those of d'or fewer errors, where $d^{\prime} \geq t, d=t+d^{\prime}+1$. The even all patterns of t or fewer errors and simultaneously detects
 d is at least $2 \mathrm{t}+1$. (See Fig.2.4) the code can correct all patterns of t or fewer errors, where can detect all patterns of $d-1$ or fewer errors. Similarly,

$(8 \cdot z) \quad \cdot\left({ }^{[} x-{ }^{T} x\right)^{H_{M}}\left({ }^{f} x \cdot{ }^{t} x\right)^{H_{p}}$
From definition 2.1, we can easily get

$$
\text { Example 3.3: Letting } G \text { and } H \text { be given by }
$$

snul
 $(9 \cdot \varepsilon) \quad \cdot 山^{H / A=s}$
the (n, k, d) code by using the parity check matrix H .

($n-k$) $\times k$ matrix of P given by (3.2).

 performance of the code．

 $\oplus \mathrm{H}^{\mathrm{T}} \neq 0$ ；hence we can correct errors from syndrome $\mathrm{s}=\oplus \mathrm{H}^{\mathrm{T}}$ ，if a nonzero codeword y of the（ n, k, d ）code is at least d ．This
suggests us that any $d-1$ or fewer error vector satisfies d，since $x H^{\top}=0$ ，and the code is linear，where the weight of of d columns of H is zero，then there is a codeword of wcight However，we can casily proof it by the fact that if the sum The proof of this theorem can be understood from the
derivation of Theorem 4.2 ［G－V bound］described later． which any d－1 or fewer columns are lineary independent over
GF（2）． Then its parity check matrix H is an $(n-k) \times n$ matrix for
 Next，we now state an important theorem which gives the
method for choosing the columns of the parity check matrix H
to obtain the minimum distance d ．
and so on．Therefore s equals the m－th column of H ，where $e_{m}=1$ ．
 $s=\left(\begin{array}{ll}1 & 1\end{array}\right)$ if $e=(1,0,0, \ldots, 0)$ ，

（3．13）

$(0 \cdot L T \cdot \varepsilon) \quad$＇$\quad \mathrm{F}=\mathrm{P}$
$(\mathrm{q} \cdot L T \cdot \varepsilon) \quad$ ， $\mathrm{T}-\mathrm{ur}-\mathrm{u} \tau=$ ¢
$(\mathrm{e} \cdot \angle \mathrm{T} \cdot \varepsilon) \quad{ }_{\mathrm{u}} \mathrm{u}^{2}=\mathrm{U}$
－（t00）＝s иәч7
$(9 \tau \cdot \varepsilon) \quad,\left[\begin{array}{ccccccc} \tau & \tau & \tau & 工 & 0 & 0 & 0 \\ \tau & \tau & 0 & 0 & \tau & \tau & 0 \\ \tau & 0 & 工 & 0 & \tau & 0 & \tau \end{array}\right]=H$
$(0 \cdot \varsigma T \cdot \varepsilon) \quad \cdot \varepsilon=\mathrm{p}$
$(e \cdot \mathrm{gT} \cdot \mathrm{\varepsilon}) \mathrm{t}$

The（ n, k, d ）Hamming code is thus defined by H ．

 －［6］эрог имоих्х 7 7əๆ

sәpoつ buțurer $\cdot \varepsilon \cdot \varepsilon$

いま

 code，whose parameters are given by

бuт̣uпиен
（ $\circ \cdot \mathrm{ST}$ • ）
$(e \cdot g T \cdot \varepsilon)$

11

> snu7
> $1+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{t}$
> $\begin{aligned} & \text { fewer errors for each of the } M \text { codewords is given by }\end{aligned}$

$$
\begin{aligned}
& \text { IV. Error-Correction Capability Bounds }
\end{aligned}
$$

storage systems

 e se yons ‘unṭpau abexozs teutazxa dof taureyo fsinq e fo

 －әұех холхә

 －I•G ЭTqP山 UT UMOYS sṭ auroxpu K s where the error occurs．The error correction table from the shown as Examples 3.3 and 3．4，the syndrome can give information

$$
G=[I, P]
$$

The generator matrix G of the LSI is given by

it is possible to get encoder and decoder for long code by
cascaded connection of LSI＇s． 30 ns ，and that for correcting errors， 50 ns ）．Furthermore，

 that such encoder and decoder have already been available

 －apoo（b’も9＇ZL）aч7 pue

（T．5）

always have an（ $n-s, k-s, d$ ）code from an（ n, k, d ）code．Thus

 detecting（SEC／DED）code．Since usually k is chosen to be main storage system as single－error－correcting，double－error－

V．Applications to Computer Storage System in Fig．4．2．
These bounds together with another bounds are shown i．e．，it coincides（3．15．a）with equality，since Hamming code
is a perfect code． $n \leq 2^{n-k}-1$ is the necessary and sufficient condition for $t=1$ ，
i．e．，it coincides（3．15．a）with equality， Letting $d=3$ ，or $t=1$ ，we get $2^{n-k}>l+n$ from Theorem 4.1
and simultaneously $2^{n-k}>n$ from Theorem 4．2．Therefore， $\mathrm{H}[(\mathrm{d}-2) /(\mathrm{n}-1)]=\mathrm{H}(\mathrm{d} / \mathrm{n})$
as $\mathrm{n} \rightarrow \infty$ ． $(\varepsilon \tau \cdot \square) \quad \cdot(u / p) H=[(\tau-u) /(z-p)] H$
where we have used（4．4）and As the similar formula to（4．3），we have
$l-k / n \geq H(d / n)$ ， $n-k>\log \left[\sum_{i=0}^{2}\binom{n-1}{i}\right]$.
possible to construct an（ n, k, d ）code which satisfies Theorem 4．2［Gilbert－Varsharmov（ $\mathrm{G}-\mathrm{V}$ ）bound］：It is
of Theorem 3．5．Thus we have the following theorem are linearly independent．This is inversely the proof since any d－l or fewer columns of H for an (n, k, a) code
$2^{\mathrm{n}-\mathrm{k}}>1+\binom{\mathrm{n}-1}{1}+\binom{\mathrm{n}-\mathrm{l}}{2}+\ldots+\binom{\mathrm{n}-1}{\mathrm{~d}-2}$于！‘хәчұо where $i_{1}, i_{2}, \ldots,{ }^{i_{d-1}}$ are all different fron each
әM
 codes," Bell syst. Tech. J., Vol.29, pp.147-160,
Apr. 1950 .

 -GL6T •Kโセ7I
'əutiph '88t•on səxnzoət pue səsxnoo WSIo buţutict pax

$\frac{\text { VI. Comments for Further Studies }}{\text { This note is only an introd }}$ shortest course to coding theory. There are many other important codes, such as BCH codes, Reed-Solomon codes,
coppa codes, and so on. For further studies, modern algeb ring, ideal, field and especially of Galois field. Peterson's book [2] is a little bit old but is still useful guide to coding theory. 'The other books such as [3], [4], [5], [6], [7] and [8] are also recommended for reading. Recent surveies
[13], [14] are interesting for practical use. ction, or the one of the
VI. Comments for Further Studies
Proc. IEEE, Vol.68, pp.564-593, May 1980.
[14] E.R. Berlekamp, "The technology of error-correcting codes,"
Jan. 1983
6T-tT•dd '
[13] V.k. Bhargava, "porward error correction schemes for
都

(Constant weight code) r out of n code
年

- 19 -

[2
 roxiə quəueuxad :sxoxiz pxeh

$P=\left[\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1\end{array}\right]$
Fi.g.5.1. The matrix
distance ratio) [2]
Fig.4.2. Bounds on minimum distance (asymptotic

[^0]: * Department of Industrial and Management Systems Engineering, School of Science and Engineering, Waseda University, 3-4-1, Ohkubo, Shinjuku, Tokyo 169-8555 Japan Phone:+81-3-5286-3290. FAX:+81-3-5273-7215. Email:hirasawa@hirasa.mgmt.waseda.ac.jp

[^1]: 1 This condition is equivalent to that the sum of every combination of $d-1$ or fewer columns is non-zero.

[^2]: ${ }^{2}$ If all input factors are continuous variables, then the regression analysis is applied, while input factors are composed of both continuous and discrete variables, then the variance analysis is used.

[^3]: Society of Taiwan, R.O.C
 Seminar on Information Systems, which was held at Taipei,
 Taiwan from Aug. 30 through Sep. 1, 1983, sponsored by the

 Rq
 ad!
 a4
 高菑"

 $$
 8-1020
 $$

