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Abstract. In this paper, we discuss collusion-secure traceability codes
for digital fingerprinting which is a technique for copyright protection of
digital contents. We first state a generalization of conventional collusion
attacks where illicit users of a digital content collude to create an ille-
gal digital content. Then we propose a collusion-secure traceability code
which can detect at least one colluder against it. We show the rate and
properties of the proposed traceability code.

1 Introduction

Digital fingerprinting is a technique to allow tracing illicit users of digital con-
tents such as software, digital movies or audio files. When digital contents are
distributed with fingerprinting technique, a unique codeword (fingerprint) to
each user is embedded into the original contents by a watermarking technique.
Fingerprinting techniques are devised to tackle the problem that some illicit
users (colluders) collude to make pirated contents. When an illegally pirated
content created by colluders is observed, the detector estimates the colluders’
fingerprints. When the number of colluders is not greater than a positive integer
T , a code which can detect at least one colluder is called a T -traceability code.
A T -traceability code is a strong version of a frameproof code and an identifiable
parent property (IPP) code [6, 8].

A well-discussed collusion attack is called the interleaving attack [3] where
each symbol of the illegal fingerprint is selected among symbols of colluder’s
fingerprints [1, 2, 6–8]. Another well-known collusion attack is the averaging
attack [9, 10] where symbols of colluders’ fingerprints are averaged and set to
the symbol of the illegal fingerprint. Although S. He and M. Wu have discussed
the performance difference of fingerprinting codes against these attacks in [3], no
T -traceability codes which can handle with the both attacks have been devised.

In this paper, we extend a collusion attack so that it includes both interleav-
ing attack and averaging attack as a special case and we propose a collusion-
secure T -traceability code against it. We devise a construction method of a
T -traceability code by concatenation of a certain type of an integer set and an



error-correcting code. We discuss a method for increasing the rate of the T -
traceability code by allowing some detection error of symbols of the inner code.
We also derive a condition for detecting more than one colluders.

2 Preliminary

2.1 Digital Fingerprinting

Let Γ = {u1, u2, . . . , uM} be the set of M users for a given digital content w.
Denote the fingerprint (codeword) of a user ui ∈ Γ by ci = (ci,1, ci,2, . . . , ci,N ) ∈
I(q)N where I(q) denote a set of q integers. Then C = {c1, c2, . . . , cM} is a
set of fingerprints (fingerprinting code) for users of the digital content. The
supplier of the digital content embeds each fingerprint ci into the digital con-
tent by a watermarking technique so that users cannot detect their embedded
fingerprints. We assume that the watermarked content for the user ui ∈ Γ is
vi = (vi,1, vi,2, . . . , vi,N ) such that

vi,j = wj + αjci,j , 1 ≤ j ≤ N, (1)

where αj is just-noticeable-difference (JND) from human visual system models
[11].

Some illicit users (colluders) might compare their watermarked contents to
know where their imperceptible fingerprints are embedded. Then they attempt
to create a pirated content with an illegal fingerprint and they use it for an illegal
purpose. This procedure is called collusion attack. Throughout of this paper,
we assume that the set of colluders is S = {u1, u2, . . . , u|S|} where |S| ≤ T for
simplicity. We denote the illegal fingerprint obtained from the pirated content by
y = (y1, y2, . . . , yN ) ∈ RN . We assume that the detector of the colluders knows
the original digital content w and the JND coefficients α = (α1, α2, . . . , αN ).
The detector of the colluders estimates the set of colluders S when it observes
the illegal fingerprint y. In the studies of digital fingerprinting, it is important
to construct a fingerprinting code which can detect one or more colluders in S
from the pirated content.

2.2 Collusion Attack

We describe collusion attacks in previous studies and the collusion attack con-
sidered in this paper. Most of previous studies have considered the interleaving
attack and the averaging attack.

Definition 1 (Interleaving Attack [1, 6, 7]) For j = 1, 2, . . . , N , let Cj(S) =
{c1,j , c2,j , . . . , c|S|,j} be a set of the j-th symbol of the colluders’ fingerprints in
S. The colluders create the j-th symbol of y by selecting one of the symbols in
Cj(S). 2



Fig. 1. Illustration of Collusion Attack

Definition 2 (Averaging Attack [9, 10]) The colluders create the j-th sym-
bol of y by averaging all of the j-th symbols of the colluders’ fingerprints. i.e.,

yj =
1
|S|

∑

i|ui∈S
ci,j . (2)

where ci = (ci,1, ci,2, . . . , ci,N ) and the addition is carried out in real numbers.
2

Remark 1 Since the colluders cannot see their fingerprint symbols in the wa-
termarked content, they actually select one of the j-th component of the water-
marked content vi, i ∈ S, in the interleaving attack. In this case, the detector of
the fingerprint can obtain yj by yj = (vi∗,j − wj)/αj where i∗ denotes the user
index of the selected symbol

When the colluders commit the averaging attack, the j-th symbol of the
watermarked content vi, i ∈ S are averaged. In this case, since

v′j =
1
|S|

∑

i|ui∈S
vi,j = wj +

αj

|S|
∑

i|ui∈S
ci,j , (3)

the detector of the fingerprint can obtain yj by yj = (v′j − wj)/αj .
Hereafter, to simplify the discussion, we only describe the illegal fingerprint

without original content. Even in this case, the discussion is not essentially dif-
ferent. 2

In conventional studies, these collusion attacks have been considered sepa-
rately. In this paper, we assume the following collusion attack.

Definition 3 (Collusion Assumption)
When the colluders create the j-th symbol of y, they select a subset of the

j-th symbols of colluders’ fingerprints. We denote the set of users’ indexes of the



selected subset by Sj . The all symbols in the selected subset Sj are averaged
and the averaged value is set to the j-th symbol of y. i.e., we have

yj =
1
|Sj |

∑

i|ui∈Sj

ci,j (4)

where the summation is carried out in real numbers. 2

This collusion attack is reduced to the interleaving attack when |Sj | = 1 for
j = 1, 2, . . . , N and the averaging attack when |Sj | = |S| for j = 1, 2, . . . , N .

3 Proposed Code Construction against Generalized
Collusion Attack

3.1 T -Traceability Code

We will discuss code construction against the new collusion attack. First, we
define the Hamming distance between a symbol and a symbol set. We define the
following sets:

Yj = {ci,j |ui ∈ Sj}. (5)

Y = {x = (x1, x2, . . . , xN )|xj ∈ Yj , 1 ≤ j ≤ N}. (6)

The set Yj expresses a set of candidate symbols which may give the j-the symbol
of the illegal fingerprint y. We define the Hamming distance between a symbol
xj and the set Yj as

δ(xj ,Yj) =
{

0, if xj ∈ Yj ;
1, otherwise. (7)

We define the Hamming distance between the sequence x = (x1, x2, . . . , xN ) and
the set Y as

dH(x,Y) =
N∑

j=1

δ(xj ,Yj). (8)

We define a T -traceability code against the new collusion attack.

Definition 4 (T -Traceability Code) For a set of colluders S such that |S| ≤
T and any uj ∈ Γ \ S, if there is at least one colluder ui ∈ S satisfying

dH(ci,Y) < dH(cj ,Y), (9)

then the code C is called the T -traceability (TA) code. 2

A T -TA code enables us to detect at least one colluder in S by simply calcu-
lating the Hamming distance if we obtain each symbol in Yj for j = 1, 2, . . . , N .
This definition is analogous to T -TA codes against the interleaving attack [6, 7].

We will propose a T -TA code against the new collusion attack defined in
Definition 3. The proposed T -TA code is constructed based on the following two



steps: (1) Each fingerprint is obtained from a codeword of a q-ary (N,K, D)
linear error-correcting (EC) code of the length N , the number of information
symbols K and the minimum distance D [5]. (2) The q symbols in each position
of the q-ary (N,K, D) EC code are mapped into another integer set I(q). This
code can be regarded as a concatenated code with a q-ary (N, K,D) outer
code and an inner code of size q.

3.2 Inner Code Construction

In this subsection, we describe the methods for constructing an inner code of the
concatenated fingerprinted code. First, we define the following set of integers.

Definition 5 Let D(q, t1, t2) be a set of q integers such that all sums of any
t1 or fewer distinct elements (allowing for each element to be repeated at most
t2 times) are distinct. If we take repeated elements into account, the maximum
number of chosen elements is t1t2. We call this set D(q, t1, t2) the (q, t1, t2)-sum
distinct (SD) set. 2

This definition for the (q, t1, t2)-SD set differs from that in [4], where the
repetitions of an element are not allowed.

Definition 6 Let A(q, t1, t2) be a set of q integers such that all averages of any
t1 or fewer elements (allowing for each element to be repeated at most t2 times)
are distinct. If we take repeated elements into account, the maximum number of
chosen elements is t1. We call this set A(q, t1, t2) the (q, t1, t2)-average distinct
(AD) set. 2

The average of t1 or fewer elements (allowing each element be repeated at
most t2 times) in a (q, t1, t2)-AD set is equal to that of other t1 or fewer distinct
elements (allowing each element be repeated at most t2 times) in the (q, t1, t2)-
AD set if and only if two subsets of the (q, t1, t2)-AD set are equal. For ex-
ample, for a set {v1, v2, . . . , vτ}, τ ≤ t1/2, the set in which each element of
{v1, v2, . . . , vτ} is chosen exactly twice gives the same average value. We regard
that these sets are essentially equal.

[Construction 1]

We here propose a method for constructing (q, t1, t2)-AD. We call this method
Construction 1. We show the following lemma and proposition.

Lemma 1 Define E(q, t) = {tj |j = 0, 1, . . . , q−1} and b = tq−1−1. Let B(q, t) =
{b} ∪ {b− x|x ∈ E(q − 1, t)}. Then the set B(q, t) is a (q, t− 1, t− 1)-SD set.

(Proof ) We first show that the set E(q, t) is a (q, t − 1, t − 1)-SD set. It is
straightforward to show

a0 + a1t + a2t
2 + · · ·+ aj−1t

j−1 < tj (10)



where integers ai satisfy 0 ≤ ai < t for i = 0, 1, . . . , j − 1. Therefore, all sums
of any t− 1 or fewer distinct elements from {1, t, t2, . . . , tj−1} (allowing for each
element to be repeated at most t− 1 times) are less than tj .

Assume that a sum of µ elements {ti1 , ti2 , . . . , tiµ} is equal to that of ν
elements {tj1 , tj2 , . . . , tjν} such that µ < t, ν < t. i.e., we have

a1t
i1 + a2t

i2 + · · ·+ aµtiµ = b1t
j1 + b2t

j2 + · · ·+ bνtjν

where ai and bj are integers such that 0 ≤ ai < t and 0 ≤ bj < t for all i and j.
Therefore, if iµ > jν , then the left-hand side is greater than the right-hand side
from eq. (10). Otherwise, the right hand side is greater than the left-hand side.
Hence, the set E(q, t) is a (q, t− 1, t− 1)-SD set.

From the fact that E(q, t) is a (q, t − 1, t − 1)-SD set, we can readily show
that the set B(q, t) is also a (q, t− 1, t− 1)-SD set. 2

The (q, t, t)-SD set by Lemma 1 is similar to a (q, t, 1)-SD set by D. B. Jevtić
[4] which does not allow repetitions of elements.

Proposition 1 A (q, t1, t1t2)-SD set is a (q, t1, t2)-AD set.

(Proof ) See Appendix A. 2

From Proposition 1, the following result is immediate.

Corollary 1 A (q, t1t2, t1t2)-SD set is a (q, t1, t2)-AD set. 2

As we will see in Sect. 3.3, we want to obtain the inner code from a (q, T, T )-
AD set to construct a concatenated T -TA code. By Corollary 1, the (q, T, T )-AD
set is equal to (q, T 2, T 2)-SD set if we use Construction 1. The rate of an inner
code given by Construction 1 is

R
(1)
in =

logT 2+1 q

q − 1
(11)

(Note that the (q, T 2, T 2)-SD set by Construction 1 is a Q-ary integer set of the
size q such that Q = (T 2 + 1)q−1).

[Construction 2]
We propose another construction method of a (q, t1, t2)-AD set. We call

this method Construction 2. We use the parity check matrix of a binary lin-
ear EC code. Consider a (n, k, d) linear code Cin with the parity check matrix
H. The parity check matrix H of size (n − k) × n has the following property
[5]: Let t = bd−1

2 c, then any 2t columns of H are linearly independent over
GF (2)n−k. Letting hi = (hi,1, hi,2, . . . , hi,n−k)T ∈ {0, 1}n−k denote the i-th col-
umn of H where T denotes the transpose of a vector. sets of any t columns
{hi1 , hi2 , . . . , hit} and {hj1 ,hj2 , . . . , hjt} satisfy

hi1 ⊕ hi2 ⊕ · · · ⊕ hit 6= hj1 ⊕ hj2 ⊕ · · · ⊕ hjt (12)

where ⊕ denotes the exclusive OR operation.
We show the following theorem.



Lemma 2 Consider the mapping wt,p (p ≤ 1) such that

wt,p : GF (2)n−k → {
0, 1, 2, . . . , (tp + 1)n−k−1 − 1

}
(13)

defined as

wt,p(hi) =
n−k∑

j=1

(tp + 1)j−1hi,j (14)

where hi is the i-th column of the parity check matrix H of a binary (n, k, d)
EC code. Then the set W = {wt,p(h1), wt,p(h2), . . . , wt,p(hn)} is a (n, t, p)-SD
set if p ≥ 1.

(Proof ) We first show that if eq. (12) holds, then

t∑
ν=1

hiν
6=

t∑
ν=1

hjν
(15)

where the summation is carried out in real numbers. Assume that
∑t

ν=1 hiν =∑t
ν=1 hjν . Then if we take module 2 operation for the both sides, we have∑t
ν=1 hiν (mod 2) ≡ ∑t

ν=1 hjν (mod 2) and this contradicts that any 2t or fewer
columns of H are linearly independent over GF (2)n−k. Hence, eq. (15) holds.

Obviously, the mapping wt,p is isomorphism for p ≥ 1. If any sum of t or
fewer columns of H is not equal to that of other t or fewer columns of H, any
sum of t or fewer elements of W is not equal to that of other t or fewer elements
of W. Even if an element is repeatedly chosen less than p times and the total
number of elements (allowing repetition) is less than tp + 1, we can show all
sums are distinct. This indicates that the set W is a (n, t, p)-SD set. 2

Note that we can construct a (n, t, p)-AD set from a (n, t, tp)-SD set by
Proposition 1.

As we will see in Sect. 3.3, we want to obtain the inner code from a (q, T, T )-
AD set to construct a concatenated T -TA code. By Proposition 1, the (q, T, T )-
AD set is given by a (q, T, T 2)-SD set if we use Construction 2. If we use the parity
check matrix of a T -error correcting (n, k, d) BCH code as H, then n = 2m − 1
and n − k = Tm for a given m [5]. In this case, the rate of the inner code is
given by

R
(2)
in =

logT 3+1(2m − 1)
Tm

=
log2(2m − 1)

Tm(log2 T 3 + 1)
. (16)

This rate satisfies

m− 1
Tm log2(T 3 + 1)

< R
(2)
in <

1
T log2(T 3 + 1)

. (17)

Therefore,

R
(2)
in → 1

T log2(T 3 + 1)
, as m →∞. (18)



We may use combinatorial methods for constructing (q, t1, t2)-AD sets. For
example, block designs, Latin squares or orthogonal arrays are used for the
parity-check matrix of a low-density parity check codes which are instances of
linear EC codes.

3.3 Concatenated Fingerprinting Code

As mentioned in Sect. 3.1, we use a q-ary (N, K, D) EC code as an outer code.
We first let each codeword of the q-ary (N, K, D) outer code correspond to each
user in Γ . Then we uniquely map q symbols of the outer code into each element
of a (q, T, T )-AD set and this gives the q-ary concatenated fingerprinting code
C.

We here mention the decoding process for the illegal fingerprint y. We first
calculate the sets Yj for j = 1, 2, . . . , N where this procedure corresponds to
decoding of the inner code. We can correctly detect the sets Yj such that |Yi| ≤ T
since the inner code is constructed from a (q, T, T )-AD set. After decoding of
the inner code, we perform decoding of the outer code. This procedure is carried
out by calculating the Hamming distance for any ci ∈ Γ and the set Y. If the
concatenated fingerprinting code is a T -TA code, we can correctly detect at least
one colluder ui ∈ S which has the nearest codeword from the set Y.

We show a condition for the outer (N,K, D) code to give a T -TA code as
follows.

Theorem 1 Assume that we use a (q, T, T )-AD set as the inner code and a
q-ary (N, K,D) code such that

D ≥ N

(
1− 1

T 2

)
(19)

as the outer code. Then, the fingerprinting code is a T -TA code.

(Proof ) The proof is analogous to the case of the codes against the interleaving
attack [6, 8]. 2

The condition D ≥ N(1 − 1
T 2 ) is simply derived from a T -TA code against

the interleaving attack. Actually this condition is identical to that for the T -TA
codes against the interleaving attack [6, 8].

From Theorem 1, if a fingerprint ci satisfies

dH(ci,Y) ≤ N − T (N −D), (20)

then the user ui is a one of colluders. Eq. (20) is a criterion for user ui to be
judged as a colluder.

Note that by Singleton’s bounds, the minimum distance of a linear code
satisfies D ≤ N −K + 1. Since it is desirable for the minimum distance D to be
as large as possible, we use the Reed-Solomon code (an instance of the maximum
distance separable (MDS) codes) [5] satisfying D = N −K + 1 and N = q − 1
as an outer code by letting q be a prime power.



The total rate of the proposed code is given by

R(1) =
K

N
R

(1)
in =

K logT 2+1(N + 1)
N2

(21)

from eq. (11) for Construction 1 of the inner code, and

R(2) =
K

N
R

(2)
in =

K logT 3+1(N + 1)
NTm

(22)

from eq. (16) for Construction 2 of the inner code.

4 Discussion

4.1 Method for Increasing Rate

Note that the total code rate of the proposed T -TA code strongly depends on
the rate of an inner code which might be very low. We can increase the code rate
if we permit detection error of some symbols of an inner code. Assume that we
use a (q, T, s)-AD set such that 1 ≤ s ≤ T as the inner code. In this case, if there
are some symbol positions in which a certain symbol is averaged more than s
times, then symbols of these positions are not correctly detected in decoding of
the inner code.

Theorem 2 Assume that we use a (q, T, s)-AD set such that 1 ≤ s ≤ T as the
inner code and a q-ary (N, K,D) code such that

D ≥ N

(
1− 1

T 2 + β(s)T + β(s)

)
(23)

as the outer code where we define β(s) = dT−s
s e. Then, the fingerprinting code is

a T -TA code. In this case, the total rate of the proposed T -TA code can achieve

R(1)(s) =
K logTs+1(N + 1)

N2
=

logT (T 2 + 1)
logT (Ts + 1)

R(1) (24)

for Construction 1 of the inner code, and

R(2)(s) =
K logT 2s+1(N + 1)

NTm
=

logT (T 3 + 1)
logT (T 2s + 1)

R(2) (25)

for Construction 2 of the inner code.

(Proof ) See appendix B. 2

It is obvious that the function R(1)(s) decreases as s increases within the
range 1 < s < T since

R(1)(s + 1)−R(1)(s) < 0. (26)



for 1 < s < T . Therefore, R(1)(T ) = R(1) and R(1)(s) > R(1) for 1 ≤ s < T . In
terms of the code rate, it is desirable for s to be as small as possible. i.e., the
case s = 1 might be the optimal one. On the other hand, the condition on the
minimum distance of the outer code becomes strict as s decreases (See Appendix
C). As for the case with Construction 2, we can discuss in the same way and we
have R(2)(T ) = R(2) and R(2)(s) > R(2) for 1 ≤ s < T .

Corollary 2 Assume that we use a (q, T, 1)-AD set as the inner code and a
q-ary (N, K,D) code such that

D ≥ N

(
1− 1

2T 2

)
(27)

as the outer code. Then, the fingerprinting code is a T -TA code. In this case,
the total rate of the concatenated code is

R(1)(1) =
logT (T 2 + 1)
logT (T + 1)

R(1) (28)

from eq. (24) for Construction 1 of the inner code, and

R(2)(1) =
logT (T 3 + 1)
logT (T 2 + 1)

R(2) (29)

from eq. (25) for Construction 2 of the inner code. 2

4.2 Capability for Detecting More Colluders

We here discuss that a condition for detecting more than one colluders. For the
case that the cardinalities |Sj | for 1 ≤ j ≤ N are greater than or equal to a
certain constant (say, τ), we have the following result.

Proposition 2 Assume that we use a (q, T, s)-AD set such that 1 ≤ s ≤ T as
the inner code and a q-ary (N,K, D) code satisfying eq. (23) as the outer code.
If |Sj | ≥ τ such that 1 ≤ τ ≤ T for all j, then there are at least τ colluders
ui ∈ S satisfying eq. (9). 2

Proposition 2 indicates that we can detect at least τ colluders correctly when
|Sj | ≥ τ for j = 1, 2, . . . , N . Even in this case, we do not falsely detect innocent
users’ fingerprints. Since the case |Sj | = 1 for j = 1, 2, . . . , N corresponds to
the interleaving attack, the proposed code can guarantee at least one colluder
against the interleaving attack. The case that |Sj | = |S| for j = 1, 2, . . . , N ,
corresponds to the averaging attack, and we can detect all colluders in this case.

Even if the cardinalities of the sets Sj in some symbol positions are less than
τ , it is desirable to capture more than or equal to τ colluders. We show the
following theorem.



Theorem 3 Assume that at least N − η symbol positions satisfy |Sj | ≥ τ . If
the T -TA code is obtained from a (q, T, T )-AD set as the inner code and a q-ary
(N, K,D) code such that

D ≥ N

(
1− 1

T 2

)
+

η

T 2
, (30)

as the outer code, we can detect more than τ colluders correctly.

(Proof ) Fingerprints of at least τ colluders ui ∈ S share more than (N −η)/T
symbols with Y. On the other hand, fingerprints of any uj ∈ Γ \S share at most
T (N − d) symbols with the set Y because they share at most (N − d) symbols
with each fingerprint ci, ui ∈ S. Therefore, we have

dH(ci,Y)− dH(cj ,Y) =
(N − η)

T
− T (N − d) (31)

=
(N − η)− T 2(N − d)

T
(32)

>
(N − η)− T 2N + T 2N(1− 1

T 2 ) + η

T
= 0. (33)

Therefore, we have at least τ colluders ui ∈ S satisfying dH(ci,Y) < dH(cj ,Y)
for any uj ∈ Γ \ S. By calculating the Hamming distance dH(ci,Y), we can
correctly detect at least τ colluders. 2

5 T -TA Code against Segment-by-Segment Collusion
Attack

In [3], He and Wu consider the interleaving attack segment by segment. In this
section, we consider a segment-by-segment collusion attack.

Consider the case that we map each symbol of the outer code to a binary
sequence b = (b1, b2, . . . , bγ) of the length γ uniquely. This fingerprinting code is
a binary code of the length Nγ. We regard this binary sequence of the length γ
as a segment. For a codeword ci = (ci,1, ci,2, . . . , ci,N ), we assume a symbol ci,j

represents a j-th symbol segment of ci (i.e., ci,j is a binary vector of length γ).
Also, for an illegal fingerprint y, a symbol yj represents a j-th symbol segment
of y.

In this section, we assume the following collusion attack.

Definition 7 (Collusion Assumption)
When the colluders create the j-th symbol segment of y, they select a subset

of the j-th symbols segment of colluders’ fingerprints. The all segments in the
selected subset are averaged and the averaged value is set to the j-th symbol of
y. i.e., denoting the set of selected users’ indexes by S ′j , we have

yj =
1
|S ′j |

∑

ui∈S′j
ci,j (34)



where the summation is carried out in real numbers. 2

In the case of the segment-by-segment collusion attack, we have a different
result about the rate of an inner code from symbol-by-symbol collusion attack.

The binary inner code is obtained from the AD set by Construction 1. If
each element of B(q, t) is represented by t-ary representation, each element is
expressed as a binary vector of the length γ = q−1. We denote this set by Bb(q, t).
We can show this set of binary vectors Bb(q, t) is a (q, t, t)-SD set of vectors.
Therefore, the (q, t, t)-AD set of vectors is constructed from the (q, t2, t2)-SD set
of vectors.

Consider we construct the inner code from the (q, T, T )-AD set by Construc-
tion 1. The rate of the inner codes is given by R

(1)
b,in = (log2 q)/(q − 1) since the

code length is q − 1 and the number of codewords is q. Remark that the rate is
independent of T . The total rate of the concatenated code is

R
(1)
b =

K

N
R

(1)
b,in =

K log2 q

N(q − 1)
. (35)

As in the previous sections, if we use a q-ary (N,K, D) Reed-Solomon code,
N = q − 1 and the rate R

(1)
b is expressed as

R
(1)
b =

K log2(N + 1)
N2

. (36)

Next, we consider constructing a binary inner code from the AD set by
Construction 2. We can show a (n, t, p)-AD set of binary vectors is given by
a (n, t, tp)-SD set of binary vectors.

Consider we construct the inner code from the (q, T, T )-AD set by Construc-
tion 2. Since the (n, T, T 2)-SD set is constructed by the parity check matrix of a
T -error correcting (n, k, d) EC code, the rate of the inner codes by Construction
2 is given by R

(2)
b,in = (log2 n)/(n− k). If we use the BCH code, n = 2m − 1 for

some m ≥ 1 and n− k = Tm. Then R
(2)
b,in = (log2 2m − 1)/Tm. If we also use a

q-ary (N, K,D) Reed-Solomon code, N = q − 1 and the rate R
(2)
b is expressed

as

R
(2)
b =

K

N
R

(2)
b,in =

K log2(N + 1)
NTm

. (37)

6 Conclusion and Future Works

In this paper, we discussed a new collusion attack model that includes well-
known conventional collusion attacks for digital fingerprinting as a special case.
We proposed a construction method of a T -TA code, which can detect at least
one colluder, against the new collusion attack when the number of colluders is
smaller than or equal to T . We discussed a method for increasing the rate of the
T -TA code by allowing some detection error of symbols of the inner code. We
also derived a condition for detecting more than one colluders.



As future works, we need to analyze properties of the proposed T -TA code
in detail. We also need to derive upper-bounds of the number of codewords for
given the code length N and the maximum size of the colluders T .
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A Proof of Proposition 1

For ν ≤ t1 and µ ≤ t1, consider choosing ν elements {vi1 , vi2 , . . . , viν} from
a (q, t1, t1t2)-SD set and µ elements {vj1 , vj2 , . . . , vjµ} from it by allowing any
element is repeatedly chosen at most t2 times. In this case, we restrict the total
number of choices to at most t1. We assume that the average of all elements
of {vi1 , vi2 , . . . , viν} is equal to that of all elements of {vj1 , vj2 , . . . , vjµ}. i.e., we
have

1
ν

(vi1 + vi2 + · · ·+ viν ) =
1
µ

(vj1 + vj2 + · · ·+ vjµ) (38)

and this is equivalent to

(µvi1 + µvi2 + · · ·+ µviν ) = (νvj1 + νvj2 + · · ·+ νvjµ). (39)

This equation indicates the sum of ν elements of {vi1 , vi2 , . . . , viν} in which an
element is repeatedly chosen at most µ×t2 times is equal to that of µ elements of



{vj1 , vj2 , . . . , vjµ
} in which an element is repeatedly chosen at most ν× t2 times.

Since ν ≤ t1 and µ ≤ t1, this contradicts the assumption that the ν elements
{vi1 , vi2 , . . . , viν

} and µ elements {vj1 , vj2 , . . . , vjµ
} are from a (q, t1, t1t2)-SD set.

Therefore, eq. (38) does not hold and this indicates that the (q, t1, t1t2)-SD set
is a (q, t1, t2)-AD set.

B Proof of Theorem 2

Since we use a (q, T, s)-AD set as the inner code, the detection errors occur at the
positions in which a symbol is repeatedly chosen more than s times. Denoting
the maximum number of blocks (of length N −D symbols) which contains more
than s repetitions by a, this a satisfies

0 < T − a(s + 1) + a ≤ s. (40)

Then we have a = dT−s
s e = β(s) since the foregoing inequality leads to

T − s

s
≤ a <

T

s
. (41)

Therefore, if T > s ≥ 1, we can correctly decode all symbols in at least N −
(N −D)β(s) symbol positions. Note that if T = s, we can correctly decode all
symbols in N symbol positions. We have at least one colluder ui ∈ S such that

dH(ci,Y) < N − N − (N −D)β(s)
T

(42)

since at least one colluder’s fingerprint shares more than {N − (N −D)β(s)}/T
symbols with the set Y. On the other hand, any user uj ∈ Γ \ S satisfies

dH(cj ,Y) ≥ N − (N −D)T − (N −D)β(s) (43)

= N − (N −D)(T + β(s)) (44)

since it has at most (N −D) symbols in common with each fingerprint in S.
Assume that all colluders’ fingerprints ci satisfy dH(ci,Y) ≥ dH(cj ,Y) for a

uj ∈ Γ \ S. Then this inequality is expanded as

N − N − (N −D)β(s)
T

> N − (N −D)(T + β(s)). (45)

Arranging this inequality, we have

N

(
1− 1

T 2 + β(s)T + β(s)

)
> D. (46)

This contradicts the assumption of the theorem. Therefore, we have at least one
colluder ci ∈ S satisfying eq. (9).



From the argument about the inner code, the code from a (q, T, s)-AD set has
the rate R

(1)
in (s) = (logTs+1 q)/(q − 1) if the code is constructed by Construction

1. Since the rate of the outer code is Rout = K/N , we have

R(1)(s) = R
(1)
in (s)Rout =

K logTs+1 q

N(q − 1)
(47)

Note that we can set N = q − 1, if we use the Reed-Solomon code which is an
instance of the MDS codes. Therefore,

R(1)(s) =
K logTs+1(N + 1)

N2
(48)

=
K logT (N + 1)

N2 logT (Ts + 1)
. (49)

Since the rate R(1) is given by eq. (21), we obtain eq. (24).
As for R(2)(s), we can derive the rate in the same way.

C Monotonicity of the Condition eq. (23)

On the condition eq. (23), we show the following proposition.

Proposition 3 Define A(s) = T 2 +(T +1)β(s). Using A(s), the right hand side
of eq. (23) is expressed as N(1− 1/A(s)). Then we have

N

(
1− 1

A(s)

)
≥ N

(
1− 1

A(s + 1)

)
for 1 ≤ s < T. (50)

i.e., the right hand side of eq. (23) is the greatest when s = 1.

(Proof ) Obviously, eq. (50) holds if and only if

A(s) ≥ A(s + 1) for 1 ≤ s < T. (51)

Arranging eq. (51), we obtain

A(s)−A(s + 1) = (T + 1)(β(s)− β(s + 1)) ≥ 0. (52)

β(s)− β(s + 1) ≥ 0 holds if

T − s

s
− T − (s + 1)

s + 1
> 0, for 1 ≤ s < T. (53)

Therefore, it suffices to show that eq. (53) holds. Actually, eq. (53) holds since

T − s

s
− T − (s + 1)

s + 1
=

T

s(s + 1)
(54)

and 1 ≤ s < T . It follows that eq. (50) holds. 2

Proposition 3 indicates, the condition on the minimum distance of the outer
code (eq. (23)) becomes strict as s decreases.


