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Abstract

Tail biting trellis codes and block concatenated codes are discussed from random
coding arguments. An error exponent and decoding complexity for tail biting random trellis
codes are shown. We then propose a block concatenated code constructed by a tail biting
trellis inner code and derive an error exponent and decoding complexity for the proposed
code. The results obtained by the proposed code show that we can attain a larger error
exponent at all rates except for low rates with the same decoding complexity compared with
the original concatenated code. ‘
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1. Introduction

A coding theorem obtained from random coding arguments dis-
cussed mainly in ‘70s gives us simple and elegant results on coding
schemes, although it states only an existence of a code. Random coding
arguments can disclose the essential mechanism with respect to the
code. Since we assume maximum likelihcod decoding, we can make clear
the relationship between the probability of decoding error Pr(&’) and the
decoding complexity G(N) at a given rate R, where N is the code length.
It should be noted that the coding theorem can only suggest the behavior
of the code, hence it is not useful enough to design an actual code.

On the other hand, turbo codes and their turbo decoding algorithms
have been developed, and low density parity check codes and their
decoding algorithms have been also redeveloped in ‘90s. It has been
known that the turbo codes combined with turbo decoding have high
performance such that they can almost meet the Shannon limit. It is
generally difficult to show, however, the performance of them such as
the probability of decoding error and the decoding complexity by simple
equations without using the weight distribution of the component codes.
Therefore it is important to note that we discuss coding schemes from the
coding theorem aspects and lead the obtained results into practical coding
problems.

Concatenated codes [1] have remarkable and important properties
from both theoretical and practical viewpoints. Recently, a block code
constructed by a tail biting convolutional code as a component code called
Parallel Concatenated Block Codes (PCBCs) has been introduced [7]. PCBCs
are evaluated by the turbo decoding techniques. Code parameters of the
PCBCs which have good performance are tabulated. They are, however,
regarded as just one of product type turbo codes. While, the present au-
thors have used a terminated trellis code as an inner code of a generalized
version of the block concatenated code called the code C!) [3] to reduce
the decoding complexity.

In this paper, we propose a block concatenated code with a tail
biting random trellis code, which is called codes Cr. Exponential error
bounds and the decoding complexity for the codes Cr are discussed
from random coding arguments. It is shown that the codes Ct have
larger error exponents compared to the original block concatenated codes
simply called codes C whose inner codes are composed of ordinary block
codes, or terminated trellis codes at all rates except for low rates under
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the same decoding complexity. Note that the block code has an advantage
in decoding delay within a constant time.

First, we derive an error exponent and the decoding complexity for
tail biting random trellis codes. Next, they are applied to construct the
codes Cr, and an error exponent and the decoding complexity of the
codes Cr are derived. Finally, they are also applied to obtain a generalized
version of the concatenated code [3].

Throughout this paper, assuming a discrete memoryless channel
with capacity C, we discuss the lower bound on the reliability function
(usually called the error exponent) and asymptotic decoding complexity
measured by the computational work [6]. The error exponents and the
decoding complexity are carefully derived. The term 0(1)s are disregarded
in Section 3, since we are interested in an asymptotic behavior.

2. Preliminaries

Let an (N, K) block code over GF(g) be a code of length N, number
of information symbols K and rate R, where

R= %lnq (K< N) [nats/symbol]. §))

From random coding arguments for an ordinary block code, there
exists a block code of length N, and rate R for wnich the probability of
decoding error Pr(£) and the decoding complexity G satisfy

Pr(&) < exp[-NE(R)] (0<R<C) )
and .

G ~ exp[NR], » (3)
where E(:) is (the lower bound on) the block code exponent [2], and the
symbol ~ indicates asymptotic equality!.

Let a (u,v,b) trellis code over GF(g) be a code of branch length u,

branch constraint length v, yielding b channel symbols per branch and
rate r which satisfies

r= % Ing [nats/symbol]. 4)

!Strictly speaking, G ~ N2exp[NR] holds, since likelirood comparisons between two
codewords require N logical operations and N shift operations, and the maximum number
of comparisons of codewords is exp[NR]. We have used N2exp[NR| = exp {NR[L +

o(1)]}.0(1) = 245 — 0,as N — oo, where the term o(1) is ignored in (3).
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v
Hereafter, we denote ” by a parameter 6, i.e.,

9=§ (0<8<1). )

We now have three methods for converting a trellis cede into a block
code [4]:

(i) Direct truncation method ;
(ii) Tail termination method ;
(iii) Tuil biting method .

Letting
N=ub 6)

for a truncated trellis code of (i) and for a terminated trellis code of (ii), the
results derived are shown in Table 1, where ¢(-) is (the lower bound on)
the trellis code exponent [2] (See Appendix A).

Table 1
Asymptotic results on error exponent and decoding complexity for
block codes
Block code Error exponent| Decoding | Upper bound
complexity | on Pr(+)
Ordinary block code E(R) exp[NR] -5
Truncated trellis code E(r) [2] q° G5
Terminated trellis code E(R) [2] qv G- a8
Tail biting trellis code Be(r) i G-
(Theorem 1) (0 <8< %)

In Table 1, the rate R of the terminated trellis code is given by the
following relation [2]:
u—v

R= r=(1-8)r. )
Note that the following equation holds between E(R) and e(r) [2]:
R
E(R) = max (1 —u)e(;), ®

which is called the concatenation construction {2].
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3. Tail biting trellis codes

The tail biting method of (iii) is introduced as a powerful converting
method for maintaining a larger error exponent with no loss in rates,
although the decoding complexity increases. There is a possibility such
that the probability of decoding error for the tail biting trellis code is
smaller than that for the ordinary block code with the same decoding
complexity, even if the decoding complexity for the tail biting trellis code
itself is increased. The tail biting method can be stated as follows [4]:

Suppose an encoder of a trellis code. First, initialize the encoder
by inputting the last v information (branch) symbols of # information
(branch) symbols, and ignore the output of the encoder. Next, input all u
information symbols into the encoder, and output the codeword of length

N = ub in channel symbols and rate r = 1 Ing. As the result, we have a
(ub, u) block code over GF(q) by the tail biting method.

Theorem 1. There exists a block code of length N and rate r obtained by a tail

biting random trellis code with 0 < 8 < % for which the probability of decoding
error Pr(&) satisfies

Pr(&) < exp[—Née(r)] (O <6< %, 0<r< C). ©))

The decoding complexity G of the block code is given by
G ~ ¢%" = exp[2N6r]. (10)

Proof. Let w be a message sequence of (branch) length u, where all
messages are generated with the equal probability. Rewrite the sequence
w as

w = (Wy—y, W), 0y

where wy_, is the former part of w (length u — v), and w,, the latter
part of w (length v). As stated in the tail biting method, first initialize
the encoder by inputting w,. Next input w into the encoder. Then
output the coded sequence x of length N = ub. Note that tail biting
random trellis coding requires every channel symbols on every branch be
chosen independently at random with the probability p which maximizes
Eo(p, p) on nonpathological channels [6]. Suppose the ¢° Viterbi trellis
diagrams, each of which starts at the state s; (i = 1,2, - ,4%) depending
on wy, and ends at the same state s;. The Viterbi decoder generates
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the maximum likelihood path %@(i) in the trellis diagram for starting at
s; and ending at s;. Computing max; @(i) = @, the decoder outputs .
The decoding error occurs when {w # @}. Without loss of generality, let
the true path w start at sy (and end at s51). The probability of decoding
error Pr(&)) within a trellis diagram starting at s; (and ending at s;) for a
(u,v,b) random trellis code is given by [2]

Pr(é1) < uKexp[—vbEo(p)] (0<p<)
= exp{—N6le(r)—o(1)]} (0<r<Q), (12)
InuK;

where an error event begins at any time and o(1) = — 0 as

N — oo. While the probability of decoding error Pr(é,) within trellis
diagrams starting at s;(i #1,i = 2,3, -- - ,4") and ending at s; is given by

Pr(£) < |D|Pexp[—ubEo(p)]

IA

exp[—ubEo(p) + pbr]
= exp {~ N[Eo(p) — p6]}
exp|—NE(6r)]. (13)

Note that the number of trellis diagrams | D| which contain no true path is
given by

|D| = g° —1 £ exp[vbr]. (14)

From (12) and (13), the probability of over-all decoding error Pr(&) is
bounded by the union bound:

Pr(&) < Pr(8)+Pr(&)
< exp|—N6e(r)] + exp[-NE(6r)], (15)

where & = £ U&. If 0 < 8 < 1/2, then E(fr) = maxg(1 — H)e(r) >
(1 - 8)e(r) > Be(r). Thus we have from (15)

Pr(&€) < exp {— NBe(r) —o(1)]}, (16)
where o(1) = InTZ —0as N—oo.

The maximum likelihood decoder for the tail biting trellis code
requires u?q¥*! comparisons (see derivations in Appendix A) for each
trellis diagram and performs them in parallel for ¢¥ trellis diagrams.
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We then have (10), where u2g?+1 = u2gq®® = exp{ovbr[2 + 0(1)]}

2lnu+Ing
(o) = 2R
the proof. O

—0asv— oo) and g = exp|br| are used, yielding

The result derived in Theorem 1 is also shown in Table 1.

Next, we evaluate the probability of decoding error Pr(&) by taking
into account the decoding complexity G so that coding methods can be
easily compared [2].

Let us assume that the code length N and rate R = r are the same for
all conversion methods. To rewrite Pr(&) in terms of G for an ordinary
block code, we have G ~ exp[NR] from (3), ie.,

1
N ~ R InG. (17)
We then have [2]
Pr(6) < G- K. (18)

Since G ~ ¢%* = exp[2N#6r] holds for the tail biting trellis code, we then
have the following corollary.

Corollary 1. For the tail biting trellis code, we have

Pr(€) < G- F. (19)
Proof. See Appendix B. O

A similar derivation gives the evaluations for truncated trellis code
of (i) and for terminated trellis code of (i) as shown in Table 1 after a little
manipulation, where g% = exp[vbr] = exp[N0r| holds (see Appendix C).

Example 1. On a very noisy channel, the negative exponent —-= e(r) ) of G in

(19) for a tail biting trellis code is larger than E(RR) of Gin (18) for an
ordinary block code, independent of 6 except for rates0 < R =r < E

The two negative exponents are shown in Figure 1 (see Appendix D). -

4. Concatenated codes with tail biting trellis inner codes

First, consider the original concatenated code C [1] over GF(g) with
an ordinary block inner code and a Reed Solomon (RS) outer code.
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Figure 1
Negative exponents in terms of G for very noisy cannel

Lemma 1 ([1]). There exists an original concatenated code C of over-all length
N and over-all rate Rg in nats/symbol whose probability of decoding error Pr(&’)
is given by

Pr(€) < exp[—-NoEc(Rg)] (0 < Ro<C), | 20)
where
Ec(Ro) = max_(1- 2)E(R), | 1)

which is called the concatenation exponent [1]. The over-all decoding complexity
Gy for the code C is given by at most

Go = O(N3 log? Ny), (22)

where the outer decoder of the RS code performs generalized minimum distance,
. (GMD) decoding [3].

Next, let us suppose a block concatenated code Ct over GF (4) cons-

tructed by a (u, v, b) tail biting trellis inner code and an (n,k) RS outer
code, where

U

n=g | | (23)

holds. From (9), we have the following theorem.
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Theorem 2. There exits a block concatenated code Ct of length No(= nN) and
rate Ro which satisfies

Pr(&) < exp|—Nobec(Ro)) <0 <8< %,0 < Rp < C), (24)
where
- _Re
ec(Ro) = max. (1 . )e(r). (25)

|
Proof. Let the block inner code be the tail biting trellis code of length N
and rate r whose average probability of decoding error P satisfies

Pe < exp[—N6e(r)] (0<0< %) (26)

from Theorem 1. Then the over-all probability of decoding error Pr(&) is
given by [1]

Pr(€) < exp [— Nod (1 - @)e(r)], 27)

where we assume the use of GMD decoding of the RS outer code of length
n(Np = nN), completing the proof. O

Substitution of ? and r in (25) into ptand g in (8), respectively, gives
the following corollary.
Corollary 2. From (8) and (25), the relation:

ec(Ro) = E(Ro) (28)
holds.

Note that although the exponent in (24) of the code Cr is essentially
coincides with that of the concatenated code with a convolutional inner
code and a block outer code [5], the latter is a member of a class of
convolutional codes.

Let the decoding complexity of the inner code be denoted by G, that
of the outer code, by go, and that of over-all concatenated code Cr, by
Go. Since the maximum likelihood decoder for the tail biting inner code of
length N and rate  requires u24?*+! = (N /b)2q exp[2N6r] comparisons®
for each received word of the inner code, and repeats them n times, we

2Gee the value in Proof of Theorem 1 before ignoring o(1).
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have
Gy = O(nN?exp[2N6r)). (29)

On the other hand, for the GMD decoder for the (n,k) RS outer code, we
have [3]

go = O(n%log®* n). (30)

Substituting (23) into (29) and (30), and letting max|[Gj, go] = Go, the over-
all decoding complexity Gy for the code Cr is calculated as follows:

Theorem 3. The over-all decoding complexity for a block concatenated code Ct
of length N is giveby

Go = O(N?1og? Ny) (o <0< %) (31)
Proof. From (29) and (30), we have

Go = max[Gy, go]
max[O(nN2 exp[2N6r]), O(n*log? n)]
= max[O(nlog?n - n%),0(n? log® n)]

= max[O(n'*??log? n), O(n*log* n)]

= O(n*log*n) (o <8< %) (32)
where we have used (23) and n =’exp[Nr| or N = O(log n). Since
Ng = nN = O(nlogn) (33)
or
_of DNo
n_o(logNo)' (34)

we have (31) from (32) by disregarding the lower order terms than or equal
to log log Np. O

From Theorem 2, we see that the error exponent 8e.(Rg) for the
code Cr is larger than Ec(Rg) for the code C at high rates with the
same decoding complexity® from Lemma 1 and Theorem 3. Especially, the

former approaches one half of the block code exponent -;—E (Yas@ — %

3t is difficult to clearly state the superiority of the code Cr in contrast to the discussion
given in such as (18) and (19), since we cannot show Pr(&£) as a function of G in this section.
This is because G appears exponential part in Pr(#), and hence asymptotic arguments have
no meaning due to the fact that G is given by a polynomial order in 7 and N.
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Example 2. The case of 8 = % gives the largest error exponent for the code
Ct with the same over-all decoding complexity for the code Cr as that for
the code C. On a very noisy channel, the error exponent for the code Cr is
larger than that for the code C, except for 0 < Rp < 0.06 C. Substitution of
(D.1) and (D.2) into (25) and (21), respectively, gives Figure 2.

0.4 T T T T T
| i
I
o .| heclRe)
= o.3h (Code Cr)
S !
? N T — Ec(Ro) |
- Code C
g o.2F (Code €)
~
>
S - -t
&)
84
0.1 7
0 1

Figure 2
Error exponents for code C and code Ct for very noisy cannel

We easily see that the error exponent for the code Ct is larger than that
for code C at high rates with the same decoding complexity over binary
symmetric channels.

5.  Generalized version of concatenated codes with tail biting trellis
inner codes

A detailed discussion is omitted here, it is obvious that the code Ct
can be applicable to construct a generalized version of the concatenated

code [3] called a code C%! ) A larger error exponent can be obtained by
the code C(TI ). The decoding complexity, however, increases as ] increases,
although it is still kept in an algebraic order of over-all length Ny, where
J is the number of RS outer codes of the generalized version of the
concatenated code.
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6. Concluding remarks

We have shown that the error exponents of block codes and block
concatenated codes can be improved by using tail biting trellis codes at
high rates without increasing the decoding complexity. Improvements in
both error exponents and the decoding complexity at low rates will be in
further investigation.

We prefer to discuss the performance obtainable with the proposed
code rather than to compute in detail that with a particular code. As stated
earlier, since the random coding arguments suggest some useful aspects to
construct the code, we should note to make them applicable to a practical
code, which is also a future work.

AppendixA. Derivations of error exponents and decoding complexity
for a truncated trellis code and a terminated trellis code
in Table 1

(a) For a truncated trellis code, we have [2]
Pr(€) < g°" exp[—ubEo(p))

= exp{—N[Eo(p) —pr]} (0<p<1)
= exp[—NE(r)], (A1)

where g° = exp|[Npr], since r = (%) Ing (g =exp(rb], ¢** = exp[rbpu] =

exp[Npr]), and Eg(p) is the Gallager’s function. Obviously, the decoder
requires 4 comparisons at each node for each step, where the number of
nodes is g°, and repeats them u steps. Since these operations are carried
out by  units logic, we have u?¢?+! computational work as the decoding
complexity in total. We have used u?q*+! = u?qexp[vbr] = exp {vbr[1 +
0(1)]}, o(1) = (2Inu +1Ing)/vbr — 0, as v — oo, where the term o(1) is
ignored in Table 1.
(b) For a terminated trellis code, we have [2]
Pr(¢) < (u—v)Kjexp {—vble(r) —o(1)]}

< NKjexp {— NOle(r) —o(1)]}

< exp{= N[E(R) - o'(1)]}, | (A2)
where '

E(R) = [max [Eo(p) —pR]  (R=(1-6)r), (A3)
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and K; is a constant independent of u. Substituting 8 = 1 — p in (8)
and disregarding o’(1) in (A.2), we have an error exponent E(R). Similar
derivations to (a) gives u?¢”*! computational work for the terminated
trellis code.

AppendixB.  Proof of Corollary 1

From (10), we have
G ~ exp[2N6r]. (B.1)
Substitution of (B.1) into (9) gives
Pr(€) < exp[—N6e(r)]
~ GTH (B2)
Appendix C.  Derivations of the exponents of Pr(£) in terms of.G
As similar to Appendix B
(a) For a truncated trellis code, we have
Pr(&) < exp[-NE(r)]
~ G2 (C.1)
(b) For a terminated trellis code, we have
Pr(&) < exp[-NE(R)]

G

—E(R
= GOR/U-0) (C.2)
.AppendixD. The exponents % and @ of Pr(&) in terms of G for
a very noisy channel

The error exponent for a very noisy channel is given by [1]

9, 0$r<E;
e(r)=1{ 2 c (D.1)
C—-r, =<r<g(,
2
and
€ _g, 0<R<S;
E(R)={ 2 4 (D.2)
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Substitution of (D.1) and (D.2) into (19) and (18), respectively, gives

Figure 1.
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