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Fast Algorithm for Generating Candidate Codewords in
Reliability-Based Maximum Likelihood Decoding

Hideki YAGI†a), Toshiyasu MATSUSHIMA††, Members, and Shigeichi HIRASAWA††, Fellow

SUMMARY We consider the reliability-based heuristic search meth-
ods for maximum likelihood decoding, which generate test error patterns
(or, equivalently, candidate codewords) according to their heuristic values.
Some studies have proposed methods for reducing the space complexity of
these algorithms, which is crucially large for long block codes at medium
to low signal to noise ratios of the channel. In this paper, we propose a new
method for reducing the time complexity of generating candidate code-
words by storing some already generated candidate codewords. Simulation
results show that the increase of memory size is small.
key words: maximum likelihood decoding, binary block codes, priority-
first search, most reliable basis, reliability

1. Introduction

One of the most efficient maximum likelihood decoding
(MLD) algorithms for linear block codes is the reliability-
based decoding algorithm that uses the column-permuted
generator matrix in non-increasing order of reliability. The
object of the reliability-based MLD algorithms are medium
to low (but not extremely low) SNRs∗. The reliability-based
MLD algorithms are divided into two types due to the gen-
eration rule of candidate codewords. The former type of
them generates candidate codewords according to a prede-
termined generation rule [3], [4], [8], [10]. The latter one is
called priority-first search-type MLD algorithms, where
candidate codewords are generated in increasing value of the
heuristic function [1], [2], [6], [7], [9], [12].

In this paper, we consider the priority-first search-type
MLD algorithms. The generalized Battail-Fang (GBF) de-
coding algorithm indicated by A. Valembois and M. Fos-
sorier [6], [7] includes a wide variety of this type of al-
gorithms such as the original Battail-Fang decoding algo-
rithm [1] or the well-known A� decoding algorithm pro-
posed by Y.S. Han et al. [2]. Subsequently, Valembois et
al. [6] and the present authors [9], [12] have proposed meth-
ods for greatly reducing the space complexity of the GBF
decoding algorithm employing some class of heuristic func-
tions. Although the space complexity of priority-first search
MLD algorithms has been reduced by these methods, their
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time complexity remains quite large at medium to low sig-
nal to noise ratios (SNRs) of the channel. One of the domi-
nant complexity per one iteration of the decoding algorithm
is O(kn) binary operations for generating a candidate code-
word where n and k represent the code length and the num-
ber of information symbols, respectively.

This paper focuses on issues of the time complexity of
the priority-first search-type MLD algorithm. Based on the
method in [12], we propose a new method for reducing the
time complexity of generating candidate codewords by stor-
ing some already generated candidate codewords. The time
complexity for it is reduced from O(kn) binary operations
to O(n) ones∗∗. Although the new method requires more
space complexity than that for the method in [12], its space
complexity is n

k times that for the method in [12]. Since the
method in [12] is a reduced-list version of the GBF decod-
ing algorithm and the A� decoding algorithm, the proposed
method can reduce the time complexity of all of these de-
coding algorithms. We show by computer simulations that
the space complexity for the fast GBF decoding algorithm
is still reduced compared with the GBF decoding algorithm.

This paper is organized as follows. In Sect. 2, we
briefly review the reliability-based MLD algorithm. In
Sect. 3, we describe the conventional GBF decoding algo-
rithms. In Sect. 4, we propose a new method for reducing
the time complexity of the GBF decoding algorithms. In
Sect. 5, we show some simulation results and we state the
conclusion in Sect. 6.

2. Reliability-Based MLD Algorithm

Let C be a binary linear (n, k, d) block code of the code
length n, the number of information symbols k and the
minimum distance d. We denote a generator matrix of
C by G. We assume any codewords c = (c1, c2, . . . , cn)
∈ {0, 1}n of C are transmitted over the additive white Gaus-
sian noise (AWGN) channel. The receiver maps a received
sequence r = (r1, r2, . . . , rn) ∈ Rn into a reliability sequence
θ = (θ1, θ2, . . . , θn), θ j = ln P(r j |c j=0)

P(r j |c j=1) , where P(r j|c j) repre-
sents the likelihood of the symbol c j. Furthermore, a hard-
decision received sequence z = (z1, z2, . . . , zn) ∈ {0, 1}n is
obtained by setting

∗At extremely low SNRs, other type of MLD algorithms such
as trellis-based MLD algorithms may work well.
∗∗For other type of the reliability-based MLD algorithm, the

same complexity has been achieved [8], [10].
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z j =

{
0, if θ j ≥ 0;
1, otherwise,

(1)

for 1 ≤ j ≤ n. The soft-decision decoder estimates the
transmitted codeword from θ and z.

In reliability-based decoding algorithms, we utilize the
column-permuted systematic generator matrix G̃ =

[
Ik |P̃
]

where the leftmost k positions are the most reliable and
linearly independent (MRI) [2], [5]–[7] in non-increasing
value of reliability. Let θ̃ = (θ̃1, θ̃2, . . . , θ̃n) and z̃ =
(z̃1, z̃2, . . . , z̃n) be permuted sequences of θ and z, respec-
tively, in the same ordering of columns of G̃. This order-
ing satisfies |θ̃ j1 | ≥ |θ̃ j2 | for 1 ≤ j1 < j2 ≤ k and for
k + 1 ≤ j1 < j2 ≤ n. Let C̃ be the code whose codewords
are generated by G̃. Define u = (u1, u2, . . . , uk) ∈ {0, 1}k
as the leftmost k symbols of z̃, i.e., uj = z̃ j, 1 ≤ ∀ j ≤ k.
The decoder first encodes u by G̃ to obtain the initial code-
word c̃∅(= uG̃). Afterwards, k-dimensional vectors, called
test error patterns t ∈ {0, 1}k, are iteratively generated and
encoded by G̃. Then, c̃ = c̃∅ ⊕ tG̃ is a candidate codeword†.
This procedure is repeated until a sufficient condition for the
most likely (ML) codeword is satisfied.

Definition 1: For a location set J ⊆ [1, k], the test error
pattern (TEP) t(J)=

(
t1(J), t2(J), . . . , tk(J)

)
has element one

in J. Define that µ(J) be the rightmost position in J, i.e.,
µ(J) = max J. For j > µ(J), the TEP t(J ∪ { j}) (or sim-
ply t(J ∪ j)) is called an extended pattern of t(J). Define
Ja = J \ µ(J). For j > µ(J), the TEP t(Ja ∪ j) is called an
adjacent pattern of t(J) in j.

�

For a binary vector u = (v1, v2, . . . , vn) ∈ {0, 1}n, we
define the correlation discrepancy [6], [7] of u as

L(u) =
∑

j|v j�z̃ j

|θ̃ j|. (2)

It is well-known that c̃best is the ML codeword if and only if
L(c̃best) = minc̃∈C̃

{
L(c̃)
}
.

3. Priority-First Search Method of Codewords

3.1 The GBF Decoding Algorithm

The priority-first search-type MLD algorithm searches the
ML codeword where TEPs are generated in increasing or-
der of heuristic values. Valembois and Fossorier have indi-
cated that the GBF decoding algorithm [6], [7] and the well-
known A� decoding algorithm [2] are equivalent when both
algorithms adopt the same heuristic function. In this section,
we state the GBF decoding algorithm.

We first mention heuristic functions of TEPs. The GBF
decoding algorithm performs the priority-first search with
any heuristic functions F(·) satisfying the following condi-
tion:

(C1) F
(
t(J)
)
≤ F
(
t(J ∪ j)

)
for j � J.

It is guaranteed that the GBF decoding algorithm al-
ways finds the ML codeword if

F
(
t(J)
)
≤ L
(
c̃(J)
)
, (3)

where c̃(J) = c̃∅ ⊕ t(J)G̃.
Hereafter, we describe how to perform the priority-first

search of TEPs using a heuristic function satisfying the con-
dition (C1). Let M(1),M(2), . . . ,M(k) be k lists of TEPs. A
TEP t(J) is supposed to be in M(µ(J)) where µ(J) = max J.
In a list M( j),∀ j ∈ [1, k], TEPs are ordered in increasing
order of heuristic values.

By the condition (C1), the TEP with the minimum
heuristic value in M( j), j ∈ [1, k], is t( j) whose Hamming
weight is one. Therefore, we just need to set the initial
lists as M( j) =

{
t( j)
}

for j ∈ [1, k]. Then, the algorithm
searches the TEP with the minimum heuristic value (we will
call this pattern the best pattern) among all TEPs not being
encoded.

We here describe the GBF decoding algorithm which
is equivalent to the A� decoding algorithm [2].

[The GBF decoding algorithm]

S1) Set c̃∅ := uG̃, c̃best := c̃∅ and L := L(c̃∅). Construct the
initial lists of TEPs.

S2) Choose the best pattern t(J) ∈ M(µ(J)) among the top-
most TEPs in non-empty lists M( j). If F(t(J)) ≥ L, then
output c̃best and halt the algorithm.

S3) Generate the next candidate codeword by c̃(J) := c̃∅ ⊕
t(J)G̃. If L(c̃(J)) < L, then set L := L(c̃(J)) and c̃best :=
c̃(J).

S4) For all lists M( j) such that j > µ(J), insert extended
patterns t(J ∪ j) at the position such that the list remains
increasing order of heuristic values. Delete t(J) from
M(µ(J)).

S5) If M( j) = ∅ for all j ∈ [1, k], then output c̃best and halt
the algorithm. Otherwise, go to S2). �

In S4), we need to sort extended patterns so that the list
M( j) remains increasing order of heuristic values. By sort-
ing, the priority-first search of the GBF decoding algorithm
is maintained [6].

3.2 A Reduced-List Method of the GBF Decoding Algo-
rithm

In [12], the present authors have proposed a technique for
reducing the list size of TEPs in the GBF decoding algo-
rithm. We call this method the reduced-list GBF decoding
algorithm. Hereafter, we briefly review it.

We define the following condition (C2) for a heuristic
function F(·).
Definition 2: Let S (0) be a certain subset of [1, k] and S (1)

be the complement of S (0). For J ⊆ [1, k], assume j1, j2 � J
†The symbol ⊕ represents Exclusive OR operation.
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and j1 < j2. If j1, j2 ∈ S (α) with α ∈ {0, 1}, then a function
F(·) satisfies

(C2) F
(
t(J ∪ j1)

)
≥ F
(
t(J ∪ j2)

)
.

We will call this condition the condition (C2)†. �

Hereafter, we consider heuristic functions satisfying
both (C1) and (C2). It has been shown in [12] that most
of heuristic functions such as in [1]–[4], [6] satisfy the con-
ditions (C1) and (C2).

The strategy of the reduced-list GBF decoding algo-
rithm is like lazy evaluation where any TEPs are not gen-
erated as long as possible. Hereafter, for convenience, we
denote S (0) = {i1, i2, . . . , is} and S (1) = {i′1, i′2, . . . , i′p}.

By the condition (C1), the best pattern in a list M( j), j ∈
[1, k], is t( j) whose Hamming weight is one. Therefore, it is
enough to construct the initial lists as

M( j) =

{ {
t( j)
}
, if j ∈ {is, i′p};

∅, otherwise,
(4)

by the condition (C2).
At S2) of the GBF decoding algorithm, if t(J) is cho-

sen as the best pattern, k − µ(J) extended patterns of t(J)
will be stored at S4). However, it is enough to store only
its extended patterns t(J ∪ is) and t(J ∪ i′p) in the list M(is)

and M(i′p), respectively. Following this modification, after
t(J ∪ iq), iq ∈ S (0), is chosen as the best pattern at S2),
t(J ∪ iq−1), iq−1 ∈ S (0), is inserted into the list M(iq−1) if it
exists. A similar procedure is carried out if the best pattern
at S2) is t(J ∪ i′q), i′q ∈ S (1).

We describe a decoding algorithm employing the above
method where the steps P1) and P4) correspond to the mod-
ifications.

[The reduced-list GBF decoding algorithm]

P1) Set c̃∅ := uG̃, c̃best := c̃∅ and L := L(c̃∅). Construct the

initial lists of TEPs by Eq. (4).

P2) This step is the same as S2).
P3) This step is the same as S3).
P4) a) If µ(J) = iq (i.e., µ(J) ∈ S (0)) and the adjacent pat-

tern t(Ja∪iq−1) exists where Ja = J\µ(J), then insert
it into the list M(iq−1).

b) If µ(J) = i′q (i.e., µ(J) ∈ S (1)) and t(Ja ∪ i′q−1) exists,

then insert it into M(i′q−1).
c) If µ(J) < is, then insert t(J ∪ is) into M(is). If µ(J) <

i′p, then insert t(J ∪ i′p) into M(i′p). Delete t(J) from
M(µ(J)).

P5) This step is the same as S5). �

Note that we need to store at most three TEPs at P4)
and this leads to a significant reduction of the list size of
TEPs.

3.3 Decoding Complexity

We here mention the time complexity of the original and

the reduced-list GBF decoding algorithms. Permuting θ in
the non-increasing order of reliability costs O(n log n) com-
parisons and constructing G̃ costs O(n × κ2) binary opera-
tions where κ = min{k, n − k} [2]–[4], [10]. These steps are
carried out only once in a decoding procedure. Contrary
to the above steps, encoding t(J) by G̃ and computing its
discrepancy are carried out iteratively, where each encoding
requires O(kn) binary operations by conventional encoding
method [4], [5], [10]. Therefore, both generating candidate
codewords and their discrepancy computations dominate the
whole decoding complexity [2], [5], [6]. The time complex-
ity per one iteration is O(kn).

We state encoding methods in detail. We can consider
the following two strategies.

(i) For a TEP t(J), let l = |J|. The number of binary
operations for generating the candidate codeword c̃(J)
by calculating c̃(J) = c̃∅ ⊕ t(J)G̃ is l(n − k + 1) + n
where the first term is required for the calculation of
t(J)G̃ and the second term is required for adding two
n-dimensional vectors. This complexity depends on the
Hamming weight l of t(J).

(ii) We can modify the algorithm to reduce the number of
binary operations for generating candidate codewords.
For a TEP t(J), let w̃(J) = t(J)G̃ and we have c̃(J) =
c̃∅ ⊕ w̃(J). Then we can process the decoding algorithm
by iteratively generating w̃(J) by TEPs t(J) instead of
candidate codewords c̃(J) [3], [4], [6], [7], [9]. In this
case, the number of binary operations for generating a
codeword w̃(J) such that w̃(J) = t(J)G̃ is l(n − k). This
complexity also depends on the Hamming weight l of
the TEP t(J).

It has been shown that the value l is fairly small when
the SNR of the channel is high, however, it becomes greater
as the SNR decreases. Therefore, time complexity for gen-
erating candidate codewords becomes larger as the SNR of
the channel tends to be low.

4. A Method for Reducing the Time Complexity of the
GBF Decoding Algorithm

4.1 Fast Method for Generating Candidate Codewords

In this section, we propose a fast method for generating can-
didate codewords.

In the reduced-list GBF decoding algorithm, the Ham-
ming distance between a newly generated TEP and the best
pattern in some decoding stage is not so large. Considering
this fact, the key ideas of the proposed method are 1) candi-
date codewords generated previously are stored in memory
and 2) a candidate codeword c̃(J) is constructed by adding
one or two rows of G̃.

For j ∈ [1, k], we denote the j-th row of P̃ by p̃j where
P̃ is the right k× (n− k) submatrix of G̃. Let b̃(J) ∈ {0, 1}n−k

†It is not necessary to fix the set S (0) in a decoding procedure.
See [12], for detail.
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express the right n−k symbols of candidate codeword c̃(J) =
c̃∅ ⊕ t(J)G̃. i.e, c̃(J) = (u ⊕ t(J)) ◦ b̃(J) where the symbol
◦ denotes concatenation of two sequences. We arrange the
lists M( j), j = 1, 2, . . . , k, as lists of n-dimensional vectors.
We store newly generated TEPs in the left k bits of the list
M( j), j = 1, 2, . . . , k, and parity check symbols of already
generated candidate codewords in the right n − k bits of the
list M( j), j = 1, 2, . . . , k.

We first consider generating the candidate codeword
c̃(J ∪ j) by extended patterns t(J ∪ j), j > µ(J), of the best
pattern t(J). We show the following proposition.

Proposition 1: We can generate the candidate codeword
c̃(J ∪ j) by

c̃(J ∪ j) =
(
u ⊕ t(J ∪ j)

)
◦
(
b̃(J) ⊕ p̃j

)
. (5)

(Proof ) By the linearity, c̃(J ∪ j) is rewritten as

c̃(J ∪ j) =
(
u ⊕ t(J ∪ j)

)
G̃ (6)

=
(
u ⊕ t(J)

)
G̃ ⊕ g̃ j, (7)

where g̃ j denotes the j-th row of G̃. To derive Eq. (7), we
use t(J ∪ j)G̃ = t(J)G̃ ⊕ g̃ j. Since the left k symbols of
c̃(J∪ j) is u⊕ t(J∪ j) by Eq. (6) and the systematic property
of G̃, and the right n− k symbols of it is b̃(J)⊕ p̃j by Eq. (7).
This proves the proposition. �

Note that by the condition (C1), at the iteration of gen-
erating c̃(J ∪ j), we have already generated b̃(J) (or, equiv-
alently, c̃(J)) since F(t(J)) ≤ F(t(J ∪ j)). Proposition 1
implies that we can obtain the candidate codeword c̃(J ∪ j)
by at most n binary operations if we store b̃(J) in the right
n − k bits in the list M( j).

We can similarly devise a fast method for generating
candidate codewords c̃(Ja ∪ j) by an adjacent pattern t(Ja ∪
j), Ja = J \ µ(J).

Proposition 2: We can generate the candidate codeword
c̃(Ja ∪ j) by

c̃(Ja ∪ j) =
(
u ⊕ t(Ja ∪ j)

)
◦
(
b̃(J) ⊕ p̃j ⊕ p̃µ(J)

)
. (8)

(Proof ) By the linearity, c̃(Ja ∪ j) is rewritten as

c̃(Ja ∪ j) =
(
u ⊕ t(Ja ∪ j)

)
G̃ (9)

=
(
u ⊕ t(Ja)

)
G̃ ⊕ g̃ j, (10)

where g̃ j denotes the j-th row of G̃. Since Ja = J \ µ(J), we
have t(Ja) = t(J) ⊕ t(µ(J)). Therefore, the first term of the
r.h.s. of Eq., (10) is rewritten as(

u ⊕ t(Ja)
)
G̃ =
(
u ⊕ t(J)

)
G̃ ⊕ g̃µ(J). (11)

Hence from Eqs. (10) and (11), we have

c̃(Ja ∪ j) =
(
u ⊕ t(J)

)
G̃ ⊕ g̃ j ⊕ g̃µ(J). (12)

Since the left k symbols of c̃(Ja∪ j) is u⊕ t(Ja∪ j) by Eq. (9)
and the right n−k symbols of it is b̃(J)⊕ p̃j⊕ p̃µ(J) by Eq. (12).

This proves the proposition. �

Note that by the condition (C2), at the iteration of gen-
erating c̃(Ja ∪ j), we have already generated b̃(J) since
F(t(J)) ≤ F(t(Ja ∪ j)). Proposition 2 implies that we
can obtain the candidate codeword c̃(Ja ∪ j) by at most
k + 2(n − k) = 2n − k binary operations if we store b̃(J)
in the right n − k bits in the list M( j).

We modify the reduced-list GBF decoding algorithm
as follows, where we store b̃(J) into Γ if any TEPs are gen-
erated from the selected best pattern t(J):

• After a new adjacent pattern t(Ja ∪ j) is generated, we
store t(Ja ∪ j) in the left k bits of the list M( j) and store
b̃(J) in the right n − k bits of it at P4-a) or P4-b).

• After a new extended pattern t(J ∪ j) is generated, we
store the t(J ∪ j) in the left k bits of the list M( j) and
store b̃(J) in the right n − k bits of it at P4-c).
• If t(J ∪ j), j ∈ {is, i′p}, is selected as the best pattern at

P2), we calculate the parity check symbols of c̃(J ∪ j)
by b̃(J∪ j) = b̃(J)⊕ p̃j. Then we generate the candidate
codeword c̃(J ∪ j) by Eq. (5) at P3).
• If t(Ja ∪ iq), q � s, is selected as the best pattern at P2),

we calculate the parity check symbols of c̃(Ja ∪ iq) by

b̃(Ja ∪ iq) = b̃(J) ⊕ p̃iq+1
⊕ p̃iq . (13)

Then we generate the candidate codeword c̃(Ja ∪ iq) by
Eq. (8) at P3). Similar arguments hold if t(Ja ∪ i′q), q �
p, is selected as the best pattern at P2).

For each TEP t(J) in the right k bits of the list M(µ(J)),
the parity symbols in the right n − k bits in it is used when
we generate a new candidate codeword c̃(J). These modifi-
cations reduce the time complexity for generating candidate
codewords from O(kn) binary operations to O(n) ones in the
reduced-list GBF decoding algorithm.

We describe an improved GBF decoding algorithm
adopting these modifications.

[The Fast GBF Decoding Algorithm]

P’1) This step is the same as P1).
P’2) This step is the same as P2).
P’3) a) If µ(J) ∈ {is, i′p} for the selected best pattern

t(J), generate the next candidate codeword c̃(J) by
Eq. (5). Otherwise, generate the next candidate code-
word c̃(J) by Eq. (8).

b) If L(c̃(J)) < L, then set L := L(c̃(J)) and c̃best :=
c̃(J).

P’4) a) If µ(J) = iq (i.e., µ(J) ∈ S (0)) and the adjacent pat-
tern t(Ja ∪ iq−1) exists, then insert it into the left k
bits of the list M(iq−1). Insert b̃(J) into the right n − k
bits of the list.

b) If µ(J) = i′q (i.e., µ(J) ∈ S (1)) and t(Ja ∪ i′q−1) exists,

then insert it into M(i′q−1). Insert b̃(J) into the right
n − k bits of the list.

c) If µ(J) < is, then insert t(J ∪ is) into M(is). If µ(J) <
i′p, then insert t(J ∪ i′p) into M(i′p). Insert b̃(J) into the
right n − k bits of the list. Delete t(J) from M(µ(J)).
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P’5) This step is the same as P5). �

We call the decoding algorithm with these modifica-
tions the fast GBF decoding algorithm.

4.2 Performance Analysis

On the time complexity of the fast GBF decoding algorithm,
we show the following theorems.

Theorem 1: The time complexity for generating candidate
codewords in the fast GBF decoding algorithm is at most
2n− k binary operations if a heuristic function satisfies con-
ditions (C1) and (C2). If we take the second encoding strat-
egy in Sect. 3.3, this complexity is only 2(n − k) operations.

�

The number of binary operations for encoding adjacent
patterns at P’4-a) and P’4-b) is larger than that for extended
patterns at P’4-c), however, this complexity can be reduced
in some cases. The parity check symbols of the candidate
codeword c̃(Ja∪iq), iq ∈ S (0), is calculated by using Eq. (13).
If the set S (0) is fixed during a decoding procedure, two rows
of P̃ in Eq. (13) are also fixed for q = 1, 2, . . . , s − 1. In this
case, letting

q̃(0)
iq
= p̃iq ⊕ p̃iq+1

, for q = 1, 2, . . . , s − 1, (14)

and if we store these q̃(0)
iq

in memory, we can calculate Eq. (8)
by at most n binary operations. Similarly, letting

q̃(1)
i′q
= p̃i′q ⊕ p̃i′q+1

, for q = 1, 2, . . . , p − 1, (15)

and if we store these q̃(1)
i′q

in memory, we can calculate Eq. (8)
by at most n binary operations. The space complexity for
storing these k−1 vectors is O((k−1)(n−k)) binary arrays and
this fixed value is less than the arrays for G̃. This method
can be applicable to the decoding algorithm with heuristic
functions in [1]–[4], [6].

Theorem 2: If the set S (0) is fixed in a decoding proce-
dure, the time complexity for it is n binary operations with
increasing the space complexity of O((k − 1)(n − k)) binary
arrays. If we take the second encoding strategy stated in
Sect. 3.3, this complexity is only n − k binary operations.

�

We here summarize the effectiveness of the fast GBF
decoding algorithm in time complexity compared with the
original and the reduced-list GBF decoding algorithms. The
time complexity for generating candidate codewords in the
conventional GBF decoding algorithms depends on l = |J|,
which is the Hamming weight of a TEP t(J). The value l
tends to increase as the SNR decreases. On the other hand,
the time complexity for generating candidate codewords in
the fast GBF decoding algorithm is independent of l. There-
fore, the effectiveness of the fast GBF decoding algorithm in
time complexity becomes larger as the SNR of the channel
tends to decrease.

The fast GBF decoding algorithm increases the total

list size of the reduced-list GBF decoding algorithm to re-
duce the time complexity. On the total list size of the fast
GBF decoding algorithm, we show the following theorem.

Theorem 3: The total list size of the fast GBF decoding
algorithm is exactly n

k times of that for the reduced-list GBF
decoding algorithm.

(Proof ) The number of parity check symbols of (n − k)-
dimensional vectors in the lists is the same as that of TEPs
in the lists. The increased space complexity of the fast GBF
decoding algorithm from the reduced-list GBF decoding al-
gorithm is at most (n − k) × M(r̃) binary arrays where M(r̃)
represents the maximum list size of TEPs in decoding of r̃.
Therefore, the number of binary arrays for the total list in
the fast GBF decoding algorithm is n × M(r̃) since that for
the maximum list of TEPs is k × M(r̃). On the other hand,
the number of binary arrays for the total list in the reduced-
list GBF decoding algorithm is k × M(r̃) and thus the space
complexity for the fast GBF decoding algorithm is exactly
as n

k times as that for the reduced-list GBF decoding algo-
rithm. �

5. Simulation Results

In this section, we evaluate the effectiveness of the fast GBF
decoding algorithm by computer simulations.

5.1 Conditions of Simulations

For the (63, 30, 13) BCH code and the (104, 52, 20)
quadratic residue (QR) code, we perform MLD by three
algorithms: the GBF decoding algorithm [2], [6] (denoted
by “GBF” in tables), the proposed fast GBF decoding al-
gorithm (denoted by “Fast GBF”) and the reduced-list GBF
decoding algorithm [12] (denoted by “RL GBF”). We com-
pare the following two items:

(i) [The time complexity] the number of binary opera-
tions for generating candidate codewords

(ii) [The space complexity] the maximum list size in
each decoding algorithm.

At each SNR Eb/S 0 [dB], all decoding algorithms are car-
ried out 10,000 times.

We assume the second strategy for generating candi-
date codeword in Sect. 3.3: for a TEP t(J), the number of
binary operations is l(n − k) where l = |J| in the GBF (also,
the reduced-list GBF) decoding algorithm and it is n − k in
the fast GBF decoding algorithm by storing consecutive two
rows of G̃.

In simulations, we employ two heuristic functions for
each decoding algorithm: (a) a heuristic function proposed
by Han et al. [2], which is considered as a standard one of
the priority-first search-type decoding algorithms, and (b) a
heuristic function proposed by Fossorier and Lin [4], which
is shown to be more effective than that of [2]. For both
heuristic functions, we fix the set S (0) as S (0) = [1, k] in a
decoding procedure.
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Table 1 The number of binary operations for generating candidate code-
words for the (63, 30, 13) BCH code with a heuristic function of Han et
al. [2].

Eb/N0 GBF Fast GBF Ratio

5.0 7.28 · 101 3.79 · 101 0.521
4.5 3.53 · 102 1.53 · 102 0.434
4.0 1.10 · 103 4.75 · 102 0.431
3.5 3.90 · 103 1.53 · 103 0.392
3.0 1.33 · 104 4.62 · 103 0.347
2.5 3.65 · 104 1.16 · 104 0.319
2.0 8.58 · 104 2.58 · 104 0.300

Table 2 The number of binary operations for generating candidate code-
words for the (104, 52, 20) QR code with a heuristic function of Han et
al. [2].

Eb/N0 GBF Fast GBF Ratio

6.0 1.85 · 101 1.13 · 101 0.615
5.5 1.03 · 102 5.71 · 101 0.552
5.0 8.25 · 102 3.60 · 102 0.437
4.5 7.26 · 103 2.52 · 103 0.347
4.0 6.46 · 104 1.80 · 104 0.279
3.5 5.44 · 105 1.24 · 105 0.227
3.0 2.54 · 106 5.41 · 105 0.213

5.2 Results about Time Complexity

We show the results about the number of binary operations
for generating candidate codewords. We show the results for
the (63, 30, 13) BCH code and the (104, 52, 20) QR code
with a heuristic function of [2] in Tables 1 and 2, respec-
tively. The results for both codes with a heuristic function
of [4] are in Tables 3 and 4, respectively. In tables, we show
the average values among 10,000 decoding procedures. The
values in the column “Ratio” indicate the ratio of the num-
ber of binary operations of the fast GBF decoding algorithm
to that of the conventional (the original and the reduced-list
GBF) decoding algorithms.

By Table 1 for the (63, 30, 13) code, the ratio of the
number of binary operations in the fast GBF decoding algo-
rithm to that in the GBF decoding algorithm is about 1/2 at
5.0 [dB]. The ratio to the GBF decoding algorithm tends to
be small as the SNR decreases and it reaches less than 1/3 at
2.0 [dB]. These results demonstrate that the effectiveness of
the fast GBF decoding algorithm becomes high as the SNR
decreases. By Table 2 for the (104, 52, 20) QR code, al-
though the ratio is about 3/5 at high SNRs, the speed for
the ratio to decrease is faster than that for the (63, 30, 13)
BCH code. Theses results demonstrate the proposed method
works well for a longer code.

From Table 3, for the (63, 30, 13) code with a heuristic
function of [4], we can see that the ratios of the fast GBF
decoding algorithm to the original GBF decoding algorithm
are similar to those in Table 1, although the numbers of bi-
nary operations are less than those in Table 1. On the other
hand, from Table 4 for the (104, 52, 20) code, the ratios are
small at high SNRs. This reason is that the heuristic func-

Table 3 The number of binary operations for generating candidate code-
words for the (63, 30, 13) BCH code with a heuristic function of Fossorier
and Lin [4].

Eb/N0 GBF Fast GBF Ratio

5.0 4.99 · 101 2.74 · 101 0.549
4.5 2.65 · 102 1.16 · 102 0.439
4.0 8.70 · 102 3.78 · 102 0.435
3.5 3.28 · 103 1.28 · 103 0.389
3.0 1.19 · 104 4.07 · 103 0.343
2.5 3.39 · 104 1.07 · 104 0.315
2.0 8.20 · 104 2.44 · 104 0.298

Table 4 The number of binary operations for generating candidate code-
words for the (104, 52, 20) QR code with a heuristic function of Fossorier
and Lin [4].

Eb/N0 GBF Fast GBF Ratio

6.0 4.98 4.60 0.925
5.5 2.93 · 101 2.27 · 101 0.775
5.0 2.72 · 102 1.38 · 102 0.507
4.5 3.60 · 103 1.17 · 103 0.326
4.0 4.20 · 104 1.07 · 104 0.254
3.5 4.35 · 105 9.25 · 104 0.212
3.0 2.29 · 106 4.67 · 105 0.203

tion of [4] is more effective at high SNRs, so the Hamming
weight of TEPs, l, is very small. In this case, there are al-
most no differences between both algorithms. At medium to
low SNRs, however, the reduction rates of the fast GBF de-
coding algorithm to the GBF decoding algorithm show the
similar behavior to those in Table 2.

We see that the reduction rate of the number of binary
operations from the simulation results is not so large as that
from the theoretical analysis. This is due to the effectiveness
of the conventional reliability-based decoding algorithm that
finds out the ML codeword before generating TEPs with a
large Hamming weight. However, we can say that it is very
significant that the order of the time complexity is theoreti-
cally reduced from O(kn) to O(n) and the maximum number
of binary operation is bounded. At this point, the fast GBF
decoding algorithm has the high efficiency.

Is is known that maximum likelihood decoding of
block codes at extremely low SNRs is impractically difficult.
In our simulations, we have observed that the numbers of bi-
nary operations at 0.0 [dB] for the (63, 30, 13) BCH code are
6.94 · 105 in the GBF decoding algorithm and 1.82 · 105 in
the fast GBF decoding algorithm. As for longer codes with
n > 100 such as the (104, 52, 20) QR code, we still cannot
carry out simulations at extremely low SNRs.

5.3 Results about Space Complexity

We show the results about the total list size for the (63, 30,
13) BCH code and (104, 52, 20) QR code. The results with
the heuristic function of [2] are in Tables 5 and 6. The re-
sults for each code with the heuristic function of [4] are in
Tables 7 and 8, respectively. In tables, we denote the average
value of the normalized list size by “Ave” and the maximum
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Table 5 The total list size for the (63, 30, 13) BCH code with a
heuristic function of Han et al. [2].

Eb/N0 [dB] GBF Proposed RL GBF

5.0 Ave 1.46 4.03 ·10−1 1.92 ·10−1

(1.000) (0.276) (0.131)
Max 2.07 ·103 8.63 ·102 4.11 ·102

(1.000) (0.417) (0.198)
4.0 Ave 1.40 ·101 4.79 2.28

(1.000) (0.342) (0.163)
Max 9.59 ·103 5.06 ·103 2.41 ·103

(1.000) (0.528) (0.251)
3.0 Ave 1.13 ·102 4.85 ·101 2.31 ·101

(1.000) (0.429) (0.204)
Max 1.58 ·104 9.66 ·103 4.60 ·103

(1.000) (0.611) (0.291)
2.0 Ave 5.85 ·102 2.86 ·102 1.36 ·102

(1.000) (0.488) (0.233)
Max 7.05 ·104 4.33 ·104 2.06 ·104

(1.000) (0.614) (0.291)

Table 6 The total list size for the (104, 52, 20) QR code with a
heuristic function of Han et al. [2].

Eb/N0 [dB] GBF Proposed RL GBF

6.5 Ave 6.50 ·10−2 9.20 ·10−3 4.60 ·10−3

(1.000) (0.142) (0.071)
Max 8.70 ·101 2.00 ·101 1.00 ·101

(1.000) (0.230) (0.115)
5.5 Ave 1.59 2.74 ·10−1 1.37 ·10−1

(1.000) (0.172) (0.086)
Max 1.67 ·103 5.34 ·102 2.67 ·102

(1.000) (0.320) (0.160)
4.5 Ave 4.44 ·101 1.13 ·101 5.66

(1.000) (0.255) (0.127)
Max 7.26 ·104 2.16 ·104 1.08 ·104

(1.000) (0.298) (0.149)
3.5 Ave 1.88 ·103 7.04 ·102 3.52 ·102

(1.000) (0.374) (0.187)
Max 3.68 ·106 1.78 ·106 8.88 ·105

(1.000) (0.483) (0.242)

value of it by “Max” among 10,000 decoding. The values in
round brackets indicate the ratio to the maximum list size of
the GBF decoding algorithm.

By Table 5 for the (63, 30, 13) code, the average value
of maximum list size in the fast GBF decoding algorithm is
about 1/4 of that in the GBF decoding algorithm at 5.0 [dB].
Although the ratio to the GBF decoding algorithm becomes
high as the SNR decreases, all values of the fast GBF de-
coding algorithm are less than those of the GBF decoding
algorithm. These results show that there is no increase of
space complexity in the fast GBF decoding algorithm from
the GBF decoding algorithm although the time complexity
is greatly reduced. By Table 6 for the (104, 52, 20) code,
the average value of maximum list size in the fast GBF de-
coding algorithm is about 1/8 of that in the GBF decoding
algorithm at 6.5 [dB]. Although the ratio to the GBF decod-
ing algorithm also increases as the SNR decreases, the total
list size of the fast GBF decoding algorithm is still less than

Table 7 The total list size for the (63, 30, 13) BCH code with a
heuristic function of Fossorier and Lin [4].

Eb/N0 [dB] GBF Proposed RL GBF

5.0 Ave 1.20 3.05 ·10−1 1.45 ·10−1

(1.000) (0.254) (0.121)
Max 2.07 ·103 8.63 ·102 4.11 ·102

(1.000) (0.417) (0.198)
4.0 Ave 1.16 ·101 3.89 1.85

(1.000) (0.335) (0.160)
Max 9.59 ·103 5.06 ·103 2.41 ·103

(1.000) (0.528) (0.251)
3.0 Ave 9.97 ·101 4.33 ·101 2.06 ·101

(1.000) (0.434) (0.207)
Max 1.52 ·104 9.32 ·103 4.44 ·103

(1.000) (0.613) (0.292)
2.0 Ave 5.52 ·102 2.73 ·102 1.30 ·102

(1.000) (0.495) (0.235)
Max 7.05 ·104 4.33 ·104 2.06 ·104

(1.000) (0.614) (0.291)

Table 8 The total list size for the (104, 52, 20) QR code with a
heuristic function of Fossorier and Lin [4].

Eb/N0 [dB] GBF Proposed RL GBF

6.5 Ave 6.50 ·10−2 9.20 ·10−3 4.60 ·10−3

(1.000) (0.142) (0.071)
Max 8.70 ·101 2.00 ·101 1.00 ·101

(1.000) (0.230) (0.115)
5.5 Ave 9.99 ·10−1 1.55 ·10−1 7.75 ·10−2

(1.000) (0.155) (0.078)
Max 1.23 ·103 1.12 ·102 5.60 ·101

(1.000) (0.091) (0.046)
4.5 Ave 2.16 ·101 5.90 2.95

(1.000) (0.273) (0.137)
Max 5.67 ·104 2.08 ·104 1.04 ·104

(1.000) (0.367) (0.183)
3.5 Ave 1.38 ·103 5.54 ·102 2.77 ·102

(1.000) (0.401) (0.201)
Max 3.68 ·106 1.78 ·106 8.88 ·105

(1.000) (0.483) (0.242)

half of that of the GBF decoding algorithm. Theses results
indicate the proposed method works well for a longer code,
too.

From Tables 7 and 8, we can see that the reduction rates
of the fast GBF decoding algorithm to the GBF decoding al-
gorithm with a heuristic function of [4] are almost the same
as those in Tables 5 and 6 at each SNR. In terms of the space
complexity, the effectiveness of the fast GBF decoding algo-
rithm is almost the same even for a different heuristic func-
tion.

6. Conclusion and Future Works

In this paper, we have proposed a new method for reduc-
ing the time complexity of generating candidate codewords
in the GBF decoding algorithm. Although the fast GBF de-
coding algorithm requires some additional space complexity
for storing some already generated candidate codewords, the
space complexity for lists is n

k times that for the reduced-list
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GBF decoding algorithm [12]. We showed by simulation
results that the total list size of the fast GBF decoding al-
gorithm is still smaller than that of the GBF decoding al-
gorithm, even though the time complexity is significantly
reduced.

As future works, we need to develop an efficient
method for heuristic search MLD algorithm with powerful
heuristic functions such as in [5].
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