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Abstract

Performance of low-density parity-check (LDPC) codes
with maximum likelihood decoding (MLD) for solid
burst erasures is discussed. The columns of the parity-
check matrix of LDPC codes are permuted to increase
the distance between elements (DBEs) which are de-
fined as a number of symbol positions between elements
1 at each row of the parity-check matrix. The column
permutation method can change the burst erasure cor-
rection capabilities by both the sum-product decoding
algorithm and MLD algorithm. We derive some prop-
erties and show from simulation results that large val-
ues of DBEs lead to good performance for MLD.

1. Introduction

The combination of LDPC codes with the sum-
product (SP) decoding algorithm enables to have high
performance with low decoding complexity [1]. Most of
studies of LDPC codes assume random errors or ran-
dom erasures. When we consider practical applications
of LDPC codes, we must take into account correction
capabilities of not only random errors or erasures but
also burst ones. In order to adapt the code to burst
channels, two approaches have been taken. The first
approach is to improve decoding methods for the burst
channels, and the second one is to construct or modify
the codes suitable for the burst channels. The first one
has been taken by A. W. Eckford et al. [7]. The second
approach has been taken by the present authors [3], [8],
M. Yang and W. E. Ryan [4] and T. Wadayama [5].
Yang et al. have proposed the Lmax algorithm which
can evaluate a length of a correctable maximum solid
burst erasure for a given parity-check matrix of LDPC
codes by an exhaustive search method. Wadayama has
proposed a column permutation algorithm which can
increase Lmax for given LDPC codes. The works by
Yang et al. and by Wadayama have considered only

one solid burst erasure1. Present authors have also
showed that for two or more solid burst erasures, the
codes constructed by a column permutation based on
increasing distance between elements (DBEs), which
are a number of symbol positions between adjacent el-
ements 1 at each row of the parity-check matrix, have
good performance of erasure correction [8]. These ap-
proaches have assumed the SP decoding algorithm for
erasure correction.

In this paper, the performance of low-density
parity-check (LDPC) codes with maximum likelihood
decoding (MLD) for solid burst erasures based on DBE
is discussed. The column permutation method based
on increasing DBE [8] can change the burst erasure
correction capabilities not only by the SP decoding al-
gorithm but also by MLD, while there is no degradation
in the performance over random erasure channels. As
a case of decoding over the erasure channel, the per-
formance of the SP decoding algorithm and MLD are
well relevant, since the SP decoding algorithm over the
erasure channel can be recognized as a part of the effi-
cient MLD algorithm [6] which utilizes the SP decoding
at first and the Gaussian elimination next. We de-
rive some properties and show from simulation results
that large values of DBEs lead to good performance for
MLD.

This paper is organized as follows. In Section 2,
we describe LDPC codes and decoding for the erasure
channel. In Section 3, we describe DBE and its some
properties. In Section 4, we show some simulation re-
sults and discussions. Finally, concluding remarks are
given in Section 5.

2. LDPC Codes and Erasure Correction

Let H = [Hmn], m ∈ [1,M ], n ∈ [1, N ], be a parity-
check matrix whose row and column lengths are M

1A “solid burst erasure” of length T stands for consecutive T
erasures.
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and N , respectively2. Let wr and wc be the row and
the column weight of H, respectively. Let M be the
number of rows of H which is given by M = Nwc/wr.
In this paper, we consider binary regular (N, wr, wc)
LDPC codes to simplify the discussion.

We assume a codeword c = (c1, c2, . . . , cN ) ∈
{0, 1}N of the LDPC code of length N is transmitted
through an erasure channel. c is disturbed by a se-
quence from the channel e = (e1, e2, . . . , eN ) ∈ {0, ε}N

where ε denotes an erasure, and the decoder receives a
sequence y = c + e. The addition of a binary symbol
and the erasure symbol is defined as 0+ε = ε, 1+ε = ε.
The decoder estimates the transmitted codeword from
the received sequence.

Let N = {1, 2, . . . , N} be the index set of symbol
positions. And let E ⊆ N and Ē = N \ E be the
index sets of erased symbol positions and known sym-
bol positions, respectively. From the definition of the
parity-check matrix, we can write

cHT = cEHT
E ⊕ cĒHT

Ē = 0, (1)

where cE and HE are a subvector of c and a submatrix
of c and H which consist of those columns indexed by
E , respectively. Since cĒHT

Ē is known to a decoder,

cEHT
E = cĒHT

Ē = s′, (2)

where s′ = (s′1, s
′
2, . . . , s

′
M ) ∈ {0, 1}M is a syndrome se-

quence calculated by cĒHT
Ē . Maximum likelihood de-

coding (MLD) obtaines the erased (unknown) sequence
cE from the simultaneous equations cEHT

E = s′. There-
fore MLD can decode the received sequence correctly
iff rank[HE ] = |E| where rank[A] denotes the rank of
a matrix A. Note that the rank of HE is given by an
erasure pattern E , so this is not equal to the rank of
parity-check matrix H.

In [6], an efficient MLD algorithm for LDPC codes
over the binary erasure channel has been proposed.
The algorithm combines the SP decoding and the Gaus-
sian elimination (GE). First it implements the SP de-
coding to correct some erased symbols, and next im-
plements the GE to correct remaining erased symbols.
From this algorithm, it can be seen that the perfor-
mance of the SP decoding algorithm and MLD are well
relevant since the SP decoding algorithm is a part of
MLD.

3. Burst Erasure Correction Capability based
on DBEs

2For two integers i and j (i ≤ j), [i, j] denotes the set of
integers from i to j.

3.1. Definitions of DBEs

We define the following set for m ∈ [1,M ].

A(m)
4
= {n : Hmn = 1} = {nm,1, nm,2, . . . , nm,wr},

where nm,1 < nm,2 < . . . < nm,wr .
We define the distance between elements (DBE) as

the number of symbol positions between adjacent ele-
ments 1 at each row of the parity-check matrix.
Definition 1. [DBE] The DBEs dmγ , m ∈ [1,M ],
γ ∈ [1, wr − 1], the minimum value of DBEs Dmin,
and the maximum value of DBEs Dmax are defined by
the following equations, respectively:

dmγ , nm,γ+1 − nm,γ , (3)

Dmin , min
m,γ

{
dmγ

}
, (4)

Dmax , max
m,γ

{
dmγ

}
. (5)

Moreover, we define Dleft (Dright) as the maximum
(minimum) value of the leftmost (rightmost) symbol
position of the element 1 for the parity-check matrix
by the following equations, respectively:

Dleft , max
m

{
nm,1

}
, (6)

Dright , max
m

{
N − nm,wr + 1

}
. (7)

2

3.2. Column Permuted Parity-Check Matrix [8]

For a parity-check matrix, the DBEs are changed
by column permutation. Let Dave be an arithmetic
average value of DBEs defined as

Dave
4
=

1
M(wr − 1)

M∑

m=1

wr−1∑

γ=1

dmγ . (8)

We state structures of the parity-check matrix that
maximizes the value of Dave. To increase DBEs, we
consider the following two conditions: (i) Dave has a
large value, (ii) Dmin > δ where δ is some positive con-
stant. From Eq. (3), we have

wr−1∑

γ=1

dmγ = nm,wr − nm,1. (9)

We can easily see that Dave depends on a difference of
column positions between the leftmost element 1 and
the rightmost element 1 at each row of a parity-check
matrix since we have

Dave =
1

M(wr − 1)

M∑

m=1

(
nm,wr − nm,1

)
. (10)

492



ρ′ ρ′

M

N

1
1

1

...

1
1

1
...

1
1

1

...

. . .

1
1

1

...

1
1

1

...

1
1

1

1
1

1
...

wc

wc

wc

wc

r′

1

...

1
1

1
1

1
...

...

. . .

wc

wc
1
1

1
wc − r′

Hlef HrigHmid

... wc − r′

Figure 1: An example of H that has a form of Eq. (11)

Therefore the condition (i) implies that the sum of
DBEs (nm,wr − nm,1 for ∀m) has a large value.

We now let the leftmost (rightmost) symbol posi-
tion at each row of H be as small (large) as possible.

Let r′
4
= M mod wc and ρ′

4
= M−r′

wc
= N

wr
− r′

wc
. Assume

that H has a following form:

H
4
= [Hlef ,Hmid,Hrig]. (11)

Hlef and Hrig are M×ρ′ matrices such that the weights
of r′ rows and M − r′ rows of these matrices are 0 and
1, respectively, and the weights of columns of those are
wc. Fig. 1 shows an example of H that has the form of
Eq. (11). Hlef constitutes the leftmost ρ′ columns of
H. Assume that column positions of element 1 at those
columns are nm,1, the leftmost element 1 at each row.
Similarly, Hrig constitutes the rightmost ρ′ columns of
H. Assume again that column positions of element 1
at those columns are nm,wr , the rightmost element 1 at
each row. Then the following lemma holds.
Lemma 1. The parity-check matrix H that has the
form of Eq. (11) maximizes the right-hand side of Eq.
(8). 2

We show the following theorem on the relation of
Dave and (N,wr, wc) LDPC codes.
Theorem 1. Any parity-check matrix of (N, wr, wc)
LDPC codes satisfies the following equation:

Dave ≤
N

wr
. (12)

2

Proof. See [8].

To modify the parity-check matrix of LDPC codes
suitable for burst erasures, we permute the columns of
a parity-check matrix of LDPC codes to have the form
Eq. (11) as nearly same as possible. Detailed descrip-
tion of the column permutation algorithm is omitted.
See [8] for details.

3.3. Properties

We assume that L solid burst erasures whose total
length is T have been contained in a received sequence.
From a point of view of the MLD for erasure channels,
it is desirable that the rank of submatrix HE has a
large value. It is hard to see the relationship between
the rank of HE and DBEs, so we show some properties
which imply the relationship between DBEs and the
number of equations in cEHT

E = s′.
Theorem 2. Assume that a solid burst erasure of
length V has been contained in a received sequence.
The number of equations in cEHT

E = s′ is exactly wcV
for Dmin ≥ V , and is at least Dmin × wc otherwise. 2

Proof. It is straightforward and omitted.

Let us denote the number of solid burst erasures by
L. When L = 1 solid burst erasure has been occurred,
Theorem 2 holds for V = T . When L > 1 solid burst
erasures have been occurred, Theorem 2 holds for V =
dT

L e since the length of one of solid burst erasures is at
least V = dT

L e.
From Theorem 2, to have the large number of equa-

tions in cEHT
E = s′, we should have Dmin a large value.

Although the rank of HE is not necessarily equal to the
number of equations in cEHE = s′, a large minimum
value of DBEs Dmin leads to a large value of the rank
of HE in general.
Theorem 3. Assume that L = 1 solid burst erasure of
the length T has been contained in a received sequence.
The number of equations in cEHT

E = s′ is exactly M
when T satisfies all the following equations:

T ≥ Dleft, (13)

T ≥ Dright, (14)

T ≥ Dmax + 1. (15)

2

Proof. The proof is accomplished by showing all rows
in HE have at least one elements 1. Consider the three
cases that L = 1 solid burst erasure of the length T
has occurred at (i) the symbol position n = 1, (ii) the
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symbol position n = N − T + 1, and (iii) the symbol
positions n = 2, 3, . . . , N − T .

In the case (i), the set of erased symbol positions
E satisfies E ∈ [1, T ]. If Eq. (13) holds, the leftmost
elements 1 at the symbol position nm,1 in all rows of H
are contained in HE , then it implies that the number
of equations in cEHT

E = s′ is exactly M .
In the case (ii), the set of erased symbol positions

E satisfies E ∈ [N − T + 1, N ]. If Eq. (14) holds, the
rightmost elements 1 at the symbol position nm,wr

in
all rows of H are contained in HE , then it implies that
the number of equations in cEHT

E = s′ is exactly M .
In the case (iii), the sets of erased symbol positions

E satisfies E ∈ [n, n + T − 1]. If Eq. (15) holds, at least
one element 1 at each row is in HE , then it implies that
the number of equations in cEHT

E = s′ is exactly M .
From the cases (i) ∼ (iii), Eqs. (13) ∼ (15) hold.

From Theorem 3, it is better to make Dmax, Dleft,
and Dright small. It is expected that as the value of
Dmin be a large value, the value of Dmax takes a small
value in general since the maximum value of Dave (the
sum of DBEs) is upper bounded. It can be easily seen
that the parity-check matrix of the form of Eq. (11)
minimizes the values of Dleft and Dright since the left-
most (rightmost) position of element 1 at each row of
the parity-check matrix of the form of Eq. (11) is as
small (large) as possible.

4. Simulation Results and Discussion

In order to demonstrate MLD performance of codes,
we show some simulation results.

4.1. Conditions for Simulations

We use LDPC codes of N = 500, wr = 6, and
wc = 3 in simulations. We construct three codes (de-
noted by “Code 1”, “Code 2”, and “Code 3”) by dif-
ferent seeds of random generator (these original codes
are denoted by “Original”). For each code, we permute
columns of a parity-check matrix of the original codes.
The permutation methods are 1) based on DBEs [8]
(denoted by “DBE”), 2) based on increasing Lmax [5]
(denoted by “Lmax”)3, and 3) to have values of many
DBEs 1 (denoted by “Small”). We decode until at least
5×105 codewords are transmitted or 30 codewords are
failed to decode by MLD. We denote the number of
solid burst erasures by L and the total length of era-
sures by T .

3Note that this column permutation method may delete some
columns for increasing Lmax [5]. However, we do not delete any
columns for a fair comparison.

Table 1 (A): The values of Dave for each code
Original DBE Lmax Small

Code 1 62.4 82.4 63.5 54.1

Code 2 62.8 82.4 65.1 54.0

Code 3 61.2 82.3 62.5 53.5

Table 1 (B): The values of Dmax (Dmin) for each code
Original DBE Lmax Small

Code 1 338 (1) 203 (53) 338 (1) 373 (1)

Code 2 394 (1) 202 (53) 394 (1) 360 (1)

Code 3 439 (1) 199 (53) 439 (1) 331 (1)

Table 1 (C): The values of Dleft (Dright) for each code
Original DBE Lmax Small

Code 1 375 (409) 115 (135) 409 (375) 336 (494)

Code 2 400 (415) 115 (125) 399 (400) 339 (488)

Code 3 436 (445) 163 (135) 445 (436) 400 (494)

4.2. The Values of DBEs

We show the values Dave, Dmax, Dmin, Dleft, and
Dright for each code in Tables 1 (A) ∼ 1 (C), respec-
tively.

From Table 1 (A), the values of Dave of the code
“DBE” are the largest. Note that the upper bound
on Dave of these codes is N/wr ' 83.3 [3], [8]. Since
the code “DBE” is constructed to have a large value
of DBEs, values of Dmin of the code “DBE” are 53,
and that of the other codes are all 1 from Table 1 (B).
From Tables 1 (B) and 1 (C), the values of Dmax, Dleft,
and Dright of the code “DBE” are considerably smaller
than those of the other codes.

4.3. Decoding for Several Burst Erasures

We assume L solid burst erasures whose total length
is T = 230, have occurred. Lengths for each burst
are chosen from a seed of random generator. Fig. 2
shows decoding performance for the total burst length
T = 230. The horizontal axis shows the number of
solid burst erasures L and the vertical axis shows the
word error rate (WER).

From Fig. 2, the performance of the code “DBE” is
better than that of the other codes. Note that when
L = 1 and 2, the code “DBE” produces the zero WER.

Next, we assume that L = 1 and L = 5 solid
burst erasures for a fixed total length T have occurred.
Lengths for each burst are chosen from a seed of ran-
dom generator. Figs. 3 (A) and 3 (B) show decoding
performance for the number of solid bursts L = 1 and
L = 5, respectively. The horizontal axis shows the total
length of solid bursts T .

From the figures, the performance of the code
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Figure 2: Decoding performance for L solid burst era-
sures whose total length T = 230. Note that when
L = 1 and 2, the code “DBE” produces the zero WER.

“DBE” is better than that of the other codes. The
difference of the performance between the code “DBE”
and the other codes are large when T is small and be-
comes smaller as T becomes large. The WER of the
code “DBE” is approximately 103 times smaller than
that of the code “Lmax” when T = 220 in Fig. 3 (B).

4.4. Discussions

From simulation results in Section 4.3, the perfor-
mance of the code “DBE” depends on the number of
solid burst erasures L. When L is small, the difference
of the performance between the code “DBE” and the
other codes is large and becomes small as L becomes
large.

The key idea of a column permutation method for
the MLD is to make the number of equations in cEHE =
s′ a large value. Tables 2 (A) ∼ 3 (B) show the average
number of equations in cEHE = s′ and the rank of HE
when L = 1 and 5, respectively.
Note: When L = 1 and T = 210 ∼ 240 in Table 2 (B),
the code “DBE” produces the zero WER, so the rank of
HE equals to the number of erasures T . When L = 5
and T = 210 ∼ 230 in Table 3 (B), the code “DBE”
also produces the zero WER, so the rank of HE equals
to the number of erasures T . 2

From Tables 2 (A) and 3 (A), the average number of
equations of the code “DBE” is larger than the other
codes and those of the codes “Original” and “Lmax” are
almost the same. If the number of equations is small,
then it implies that the rank in HE tneds to be small.
From Tables 2 (B) and 3 (B), we can see that the rank in
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Figure 3 (A): Decoding performance for L = 1 solid
burst erasures whose total length is T . Note that when
L = 1 and T = 210 ∼ 240, the code “DBE” produces
zero WER.

HE of the code “DBE” is larger than those of the other
codes. When T = 230 and L = 5 from Table 3 (B),
since Dmin of the codes “DBE” are all 53 and there is
at least one solid burst erasure of the length at least
46, it is guaranteed from Theorem 2 that the number of
equations in cEHT

E = s′ is at least 138. However, Dmin

of the other codes are all 1, so it is only guaranteed
that the number of equations in cEHE = s′ is at least
3.

5. Concluding Remarks

In this paper, we show the correction capabilities of
LDPC codes for solid burst erasures decoded by MLD
based on DBEs. From simulation results, the codes
with large values of DBEs have a good performance
when L is small. We also show that the performance
of the code with small values of DBEs is bad. We
show from Theorems 2 and 3 that large values of Dmin

and small values of Dmax, Dleft, and Dright leads to the
large number of equations in cEHT

E = s′. We also show
from simulation results that the rank of HE and the
average number of equations in cEHT

E = s′ of the code
“DBE” are larger than those of the other codes. Since
performances of the MLD relate to the rank of HE ,
larger the average number of equations in cEHT

E = s′

for each code, the smaller WER of simulation results
can be obtained.

Theoretical analyses of the performance between
the DBEs and the rank of HE is remained for further
investigation.
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