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Abstract — This paper generalizes parallel error

correcting codes proposed by Alshwede et al. over a

type of multiple access channels called a parallel chan-

nel. The generalized parallel error correcting codes

can handle with more errors compared with the orig-

inal ones. We show construction methods of indepen-

dent and non-independent parallel error correcting

code and decoding methods. We derive some bounds

about the size of respective parallel error correcting

code.

I. Introduction

Coding schemes for multiple access channels have been
well-discussed. Especially, for a multiple access adder
channel, many studies about code constructions have
been conducted [2, 3, 4, 5, 6]. In contrast to the conven-
tional works, R. Ahlswede et al. have considered a new
multiple access channel model called a parallel channel
and discussed coding schemes for this channel [1]．

The parallel channel is a bundle of lines through which
messages are transmitted parallelly. When messages are
transmitted through the channel, highly correlated er-
rors occur in respective lines. For example, in a parallel
port of a computer, messages are transmitted through
several lines simultaneously and disturbed by magnetic
noise, etc. At that time, messages at a time instance may
be equally disturbed. Namely, if an error occurs in a line,
the probability that an error occurs in its neighbor lines
becomes high. Ahlswede et al. have focused on this fact
and define a t-parallel error which indicates the same
errors with the Hamming weight less than or equal to t
in all lines of the channel. They have derived necessary
and sufficient conditions of code correcting the t-parallel
error. They have given code constructions of the opti-
mal parallel error correcting codes with the largest size
for given a code length and t. Their work gives a bunch
of suggestions, however the channel model in [1] is not
sufficient for practical applications.

In this paper, we generalize the concept of Ahlswede’s
parallel channel, by allowing some random errors besides
the same errors in all lines. Subsequently, we derive nec-
essary and sufficient conditions of parallel error correct-
ing codes whose line codes are dependent each other. We
show a code construction that achieves the maximal size

1This work is supported by Waseda University Grant for Special
Research Project No. 2006B-293.

for a given code length and t. Then, we consider linear
parallel error correcting codes whose line codes are inde-
pendent and derive a bound of the maximal achievable
rate (pair of dimensions of all line codes [1, 5]). Although
the results of this paper are applicable to a general m
senders model for any m ≥ 2, the case of m = 2 is es-
sential and important. Therefore, as discussed in [1], we
first focus on the case of m = 2, and then we generalize
the results to a general m senders model.

This paper is organized as follows: in Sect. II, we de-
scribe a new model and some definitions. Next, in Sect.
III, we derive necessary and sufficient conditions for non-
linear parallel error correcting codes whose line codes are
dependent each other. Then in Sect. IV, we discuss linear
independent parallel error correcting codes. In Sect. V,
we generalize the results in Sect. III, IV for a general m
senders model. Finally in Sect. VI, we give the concluding
remarks.

II. Model and Definitions

In this section, we describe the channel model of this
paper. In this paper, the two senders model is essential
and generalization of results of the two senders case to a
general m(≥ 2) senders case is not so difficult. Then, we
here describe the two senders model and derive results for
it.

We denote input alphabets from two senders by X and
Y. In this paper, we assume that the set of the input
and output alphabets is a finite field GF (q) where q is a
power of a prime.

Assume that a codeword of a code C ⊂ Xn × Yn of
length 2n is input to the parallel channel where the first
n symbols of the codeword are a sender’s message and the
last n symbols of it are another sender’s message. In the
channel, an error vector (e, ε) ∈ GFn(q) × GFn(q) such
that wH(e) ≤ t + s, wH(ε) ≤ t + s and wH(e − ε) ≤ 2s
occurs and disturbs the input codeword. We call this pair
of errors (e, ε) a (t, s)-parallel error. In this paper, we
assume t ≥ s.

Definition 1 A code C ⊂ Xn × Yn is called an
(n, t, s, |C|) parallel error correcting code, in short,
an (n, t, s, |C|) P-code over GF (q) if there are no code-
words c = (u, v), c′ = (u′, v′) ∈ C such that u, u′ ∈ Xn

and v, v′ ∈ Yn satisfying

c + (e, ε) = c′ + (e′, ε′) (1)
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where pairs of errors (e, ε) and (e′, ε′) are (t, s)-parallel
errors. �

Definition 2 An (n, t, s, |C|) P-code C ⊂ Xn × Yn is
called independent, in short, an (n, t, s, |C|) IP-code if
the code C is a Cartesian product of a subspace U ⊆ Xn

and a subspace V ⊆ Yn. i.e., C = U × V. An (n, t, s, |C|)
IP-code is linear, in short, an (n, t, s, k, l) LIP-code
if U and V are linear subspaces with k = dim(U) and
l = dim(V). �

Note that if s = 0, a (t, 0)-parallel error (e, ε) satisfies
e = ε and this model is reduced to that assumed in [1].
Therefore, the above model is a generalized version of
that in [1] by allowing additional at most s errors in each
line of the channel. The definitions of an (n, t, s, |C|) P-
code, IP-code and an (n, t, s, k, l) LIP-code are identical
to those in [1] when s = 0.

Throughout this paper, we denote the maximum size
of t-error correcting codes of the length n by A(n, t) and
the maximum dimension of linear t-error correcting codes
of the length n by L(n, t). For any sets A ∈ GFn(q) and
B ∈ GFn(q), we define an addition operation of sets as
A + B = {a + b|a ∈ A, b ∈ B}.

III. Parallel Error Correcting Code

We derive necessary and sufficient conditions for par-
allel error correcting codes.

Let U ⊆ Xn and V ⊆ Yn. For U and V, let C0 be the
maximal subspace such that U = C0 +U0 and V = C0 +V0

for some U0 ⊆ Xn, V0 ⊆ Yn. i.e., U = {u = x + u0|x ∈
C0, u0 ∈ U0} and V = {v = x + v0|x ∈ C0, v0 ∈ V0}.

We show the following lemma.

Lemma 1 Define a code C ⊂ Xn×Yn to have codewords

c = (x + u0, x + v0) (2)

where x + u0 ∈ U ,x + v0 ∈ V and x ∈ C0. The code C
is an (n, t, s, |C|) P-code if and only if (iff) the following
conditions hold:
(i) The subcode C0 is a (t + s)-error correcting code.
(ii) For U , V given by C0 in the condition (i), define

Z = {z = u0 − v0|u0 ∈ U0, v0 ∈ V0}. (3)

Then Z is a (2s)-error correcting code of the size
|Z| = |U0| × |V0|.

(Proof ) We will prove the if part. Assume that the
conditions (i) and (ii) hold.

Let the code C be not an (n, t, s, |C|) P-code. Then from
eq. (1) for c = (x+u0, x+v0), c′ = (x′+u′

0, x
′+v′

0) ∈ C,
we have

x + u0 + e = x′ + u′
0 + e′, (4)

x + v0 + ε = x′ + v′
0 + ε′ (5)

where (e, ε) and (e′, ε′) are (t, s)-parallel errors. Suppose
that u0 �= u′

0 or v0 �= v′
0. Subtracting eq. (5) from eq.

(4), we have

(u0 − v0) − (u′
0 − v′

0) = (e′ − ε′) − (e − ε). (6)

Since

dH(u0 − v0, u
′
0 − v′

0) = dH(e′ − ε′, e − ε)

≤ wH(e′ − ε′) + wH(e − ε) ≤ 4s (7)

from the definition, eq. (6) implies the set Z = {z =
u0−v0} is not a (2s)-error correcting code (note that the
condition |Z| = |U0|×|V0| implies u0−v0 �= u′

0−v′
0 unless

u0 = u′
0 and v0 = v′

0). This contradicts the assumption
and C is an (n, t, s, |C|) P-code if u0 �= u′

0 or v0 �= v′
0.

Next suppose that c �= c′ but u0 = u′
0 and v0 = v′

0.
From eqs. (4), (5), we have

x − x′ = e′ − e, (8)

x − x′ = ε′ − ε, (9)

for x, x′ ∈ C0. These equations imply that the set C0 is
not a (t+s)-error correcting code and this is contradiction
to the assumption.

Next, we prove the only-if part. Assume that the code
C is an (n, t, s, |C|) P-code.

Suppose that the condition (i) does not hold. Then if
u0 = u′

0 and v0 = v′
0, there exist x, x′ ∈ C0 satisfying

eqs. (8) and (9), and hence eq. (1). This is contradiction
and therefore, the condition (i) holds.

If the condition (ii) does not hold, there exist u, u′ ∈
U0 and v,v′ ∈ V0 satisfying eq. (6) and hence, eq. (1) if
x = x′. This is contradiction to the assumption that C
is a P-code, and therefore, the condition (ii) holds. Note
that we need the constraint |Z| = |U0| × |V0| for one-to-
one correspondence between a pair (u0, v0) ∈ U0×V0 and
u0 − v0 ∈ Z. Consequently, the conditions (i), (ii) hold.

�

We show the following theorem about the size of the
P-code C.

Theorem 1 Let C be an (n, t, s,M) P-code. Then we
have the following statements:

(i) The size M is bounded as

M ≤ A(n, t + s) × A(n, 2s). (10)

(ii) For M = A(n, t + s) × A(n, 2s), there exists an
(n, t, s, M) P-code.

(Proof ) We will briefly show the statement (i). Ap-
parently, we have |C0| ≤ A(n, t + s) and |Z| = |U0| ×
|V0| ≤ A(n, 2s) from the conditions of Lemma 1. Then
|C| = |C0| × |U0| × |V0| ≤ A(n, t + s) × A(n, 2s).

Next, we will show that we can construct an (n, t, s, M)
P-code which satisfies (ii).
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Construction I: Choose any (t + s)-error correcting
code of the size A(n, t + s) as C0. We also choose a (2s)-
error correcting code of the size A(n, 2s) as V0 and let
U0 = ∅. We set U = {u = x|x ∈ C0}, V = {v =
x + v0|x ∈ C0,v0 ∈ V0}, and C = U × V.

For c = (u, v), c′ = (u′,v′) ∈ C, equations

u + e = u′ + e′, (11)

v + ε = v′ + ε′, (12)

never hold simultaneously since eq. (11) for u �= u′ itself
implies U(= C0) is not a (t + s)-error correcting code
and eq. (11) for u = u′ and eq. (12) leads to v0 − v′

0 =
(ε′−e′)−(ε−e) which implies that V0 is not a (2s)-error
correcting code. Hence, the code C is a (t, s) P-code.

Obviously, M = A(n, t + s) × A(n, 2s). Therefore, the
code C is an (n, t, s, M) P-code. �

We here mention a decoding process of the P-code
obtained by Construction I. Assume that a codeword
c = (u, v) ∈ C has been sent and a sequence c′ = c+(e, ε)
is received by the decoder where errors (e, ε) are a (t, s)-
parallel error. We denote u′ = u + e and v′ = v + ε.

Decoding Algorithm I:

(1) Calculate z = v′ − u′.

(2) For z, perform a decoding algorithm of the code V0

to find a codeword v0 and an error pattern f =
ε − e.

(3) Perform a decoding algorithm of the code U(= C0)
by erasing symbols of u′ in the positions of {j|fj �=
0} where f = (f1, f2, . . . , fn).

We will show that Decoding Algorithm I finds the
transmitted codeword c = (u,v) ∈ C if there occurs a
(t, s)-parallel error.

Since u = x and v = x + v0, we obtain z = v′ − u′ =
v0 + ε − e = v0 + f in the step (1). Since wH(f) ≤ 2s
and the code V0 is a (2s)-error correcting code, a conven-
tional decoding algorithm for the code V0 can correctly
find a codeword v0 from z = v0 +f . Then we can obtain
the error pattern f by calculating f = z − v0 in the step
(2). In the step (3), we regard symbols of the received
sequence u′ in the positions of {j|fj �= 0} as erasure sym-
bols. We denote the resultant sequence by ũ. Since the
code U(= C0) is a (t + s)-error correcting code, it has a
minimum distance d(U) ≥ 2(t+s)+1 and corrects t errors
and 2s erasure symbols [8]. Therefore, we can obtain the
codeword u ∈ U from ũ and subsequently, v = u + v0.
Thus, Decoding Algorithm I surely finds c = (u, v).

IV. Linear Independent Parallel Error
Correcting Code

In this section, we discuss (n, t, s, |C|) IP-codes C =
U × V. We use linear codes as U ⊆ Xn and V ⊆ Yn. i.e.,
the code C becomes an LIP-code.

Lemma 2 For two linear subspaces U and V, a code C =
U × V is an (n, t, s, k, l) LIP-code with k = dim(U) and
l = dim(V) iff the following conditions hold:
(i) Let C0 = U ∩ V. Then C0 is a linear (t + s)-error

correcting code.
(ii) U + V = {u + v|u ∈ U ,v ∈ V} is a (2s)-error

correcting code.

(Proof ) We assume that the conditions (i) and (ii) hold
but the code C be not an LIP-code. First suppose (u −
u′) �∈ C0 or (v−v′) �∈ C0, then u−v �= u′−v′. There exist
c = (u, v), c′ = (u′, v′) ∈ C and (t, s)-parallel errors (e, ε)
and (e′, ε′) which satisfy eqs. (11), (12). Then u − v −
(u′−v′) = f −f ′ where f = ε−e and f ′ = ε′−e′. Since
wH(f) ≤ 2s, wH(f ′) ≤ 2s and u − v ∈ U × V,u′ − v′ ∈
U ×V, this contradicts the assumption that the condition
(ii) holds.

Next suppose (u − u′) ∈ C0 and (v − v′) ∈ C0. Then
eqs. (11), (12) can be expressed as

(u − u′) − 0 = e′ − e, (13)

(v − v′) − 0 = ε′ − ε. (14)

Satisfying eqs. (13), (14) simultaneously implies that the
code C0 is not a (t+s)-error correcting code since 0 ∈ C0.
This is a contradiction, which proves the if part.

Conversely, assume that the code C is an (n, t, s, k, l)
LIP-code.

If the condition (ii) does not hold, there exist u, u′ ∈ U
and v, v′ ∈ V satisfying u − v − (u′ − v′) = f − f ′. If
u = u′, this equation implies v′ − v = f − f ′ = ε − ε′

since e = e′ from eq. (11) and hence, eq. (1) holds. This
is contradiction to the assumption that C is a LIP-code,
and therefore, the condition (ii) holds.

Let the condition (i) do not hold. Then there exist
u,u′ ∈ U and v, v′ ∈ V satisfying (u − u′) ∈ C0, (u −
u′) ∈ C0 and eqs. (11), (12), which implies eq. (1). This
is contradiction and therefore, the condition (i) holds.
Therefore, we can show the only if part. �

Although we cannot obtain the optimal IP-code with
the maximum size when we consider LIP-codes, we can
obtain the pair of achievable rates (pair of dimensions of
all line codes [1, 5]) of LIP-codes.

Theorem 2 For given positive integers n, t, s and k1, k2,
there exists an (n, t, s, k1, k2) LIP-code iff k1, k2 satisfy

k1 + k2 ≤ L(n, t + s) + L(n, 2s) (15)

and k1 ≤ n, k2 ≤ n.

(Proof )
We first assume that without loss of genearity, k1 ≤ n,

k2 ≤ n and k1 +k2 = L(n, t+s)+L(n, 2s). From Lemma
2, we choose any linear (t+s)-error correcting code of the
dimension k = L(n, t + s) as the code C0 = U ∩ V. Then
the proof follows the following construction.
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Construction II: We denote k bases of the linear sub-
space C0 by α1,α2, . . . ,αk. Furthermore, we choose any
linear (2s)-error correcting code C′ of the dimension k′ =
dim(C′) = L(n, 2s) whose bases include α1, α2, . . . ,αk.
We denote other k′ − k bases of C′ by β1, β2, . . . ,βk′−k.
Now we divide {1, 2, . . . , k′−k} into a set I1 and I2 (with
I1 ∩I2 = ∅) such that {α1, α2, . . . ,αk}∪ {βi| i ∈ I1} are
bases of U and {α1, α2, . . . ,αk}∪{βi| i ∈ I2} are bases of
V. Let C = U×V. Then we have (k1−k)+(k2−k) = k′−k
where k1 = dim(U) and k2 = dim(V). From Lemma 2,
the code C is an (n, t, s, k1, k2) LIP-code and k1 + k2 =
k + k′ = L(n, t + s) + L(n, 2s).

Conversely, we assume that a code C = U × V is an
LIP-code. From Lemma 2, U + V and C0 = U ∩ V are a
linear (2s)-error correcting code and a linear (t+ s)-error
correcting code, respectively. We denote k = dim(C0) and
k′ = dim(U × V). Then (k1 − k) + (k2 − k) = k′ − k and
we have k1 + k2 = k′ + k. By |U| = qk1 , |V| = qk2 , we
have

|C| = |U| × |V| = qk1 × qk2 = qk′+k. (16)

Since k′ ≤ L(n, 2s), k ≤ L(n, t + s), we can show

|C| ≤ qL(n,t+s)+L(n,2s). (17)

i.e., eq. (15) holds. �

We here mention a decoding process of the LIP-code
obtained by Construction II. Let U0 and V0 satisfy U =
C0 +U0 and V = C0 +V0, respectively. As in Sect. III, we
assume that a codeword c = (u, v) = (x+u0, y+v0) ∈ C
with x,y ∈ C0,u0 ∈ U0 and v0 ∈ V0 has been transmitted
and a sequence c′ = c + (e, ε) is received by the decoder
where (e, ε) is a (t, s)-parallel error. We denote u′ = u+e
and v′ = v + ε.

For a LIP-code C by Construction II, we denote a gen-
erator matrix of the code C0 by G0. Similarly, we denote a
generator matrix of U0 and V0 by G1 and G2, respectively.
The sizes of G0, G1, G2 are k×n, (k1−k)×n, (k2−k)×n,
respectively. Let an overall generator matrix of U +V be

G =

⎛
⎝

G0

G1

G2

⎞
⎠ , (18)

and then the rank of G is full.

Decoding Algorithm II:

(1) Calculate z = v′ − u′.

(2) For z, perform a decoding algorithm for the code
U+V to find a codeword v−u and an error pattern
f = ε − e.

(3) Calculate

a = (a1, a2, . . . , ak1+k2−k) = (v − u)G† (19)

where G† = GT (GGT )−1 is a generalized inverse
matrix1 (Moore-Penrose pseudo-insvese matrix [7])

1The symbol T denotes transposition of a matrix.

of G and calculate u0 = (ak+1, . . . , ak1−k)G1 ∈ U0

and v0 = (ak1−k+1, . . . , ak1+k2−k)G2 ∈ V0.

(4) Calculate u′−u0 and perform a decoding algorithm
for the code C0 by erasing symbols of u′−u0 in the
positions of {j|fj �= 0} where f = (f1, f2, . . . , fn).

(5) Calculate v′−v0 and perform a decoding algorithm
for the code C0 by erasing symbols of v′ −v0 in the
positions of {j|fj �= 0} where f = (f1, f2, . . . , fn).

We will show the validity of Decoding Algorithm II
that it corrects a (t, s)-parallel error.

Note that z = v′ −u′ = v −u + f in Step (1) and the
equation

v − u = (y − x) + v0 − u0 = aG (20)

holds for some a ∈ GF k1+k2−k(q). Since wH(f) ≤ 2s,
the decoding algorithm for the code U + V finds v − u
and f in Step (2). If we multiply the generalized inverse
matrix G† to each term of eq. (20) by right,

(v − u)G† = aGG† = a (21)

where the last equation can be obtained by the defini-
tion of G† as GG† = I (I denotes the identity matrix).
Therefore, in Step (3), we can obtain a and re-encoding
operation generates u0 ∈ U0 and v0 ∈ V0. In Step (4),
we calculate u′ − u0 = x + e with x ∈ C0. Since the
code C0 has the minimum distance d(C0) ≥ 2(t + s) + 1,
this can correct t errors and 2s erasure symbols [8]. Then
from u′ −u0, we can obtain x correctly by regarding the
symbols of u′ −u0 in {j|fj �= 0} as erasure symbols. We
can show similarly for Step (5) that we can obtain y ∈ C0

correctly by regarding the symbols of v′−v0 in {j|fj �= 0}
as erasure symbols. Consequently, we can correct a (t, s)-
parallel error.

V. A General Model

In this section, we consider a general m ≥ 2 senders
model and generalize the results in the foregoing sections.

Assume that error sequences e1, e2, . . . ,em where each
ei occurs in the i-th line of the parallel channel. We define
a (t, s)-parallel error (e1, e2, . . . ,em) to satisfy wH(ei) ≤
t + s and wH(ei − ej) ≤ 2s for 1 ≤ i ≤ m, 1 ≤ j ≤ m.

Definition 3 For m ≥ 2, if the code C is a subspace of
a Cartesian product of m GF n(q) and no codewords c =
(c1, c2, . . . , cm), c′ = (c′1, c

′
2, . . . , c

′
m) ∈ C with ci, c

′
i ∈

GFn(q) satisfy

c + (e1,e2, . . . ,em) = c′ + (e′
1,e

′
2, . . . ,e

′
m), (22)

where (e1, e2, . . . ,em) and (e′
1,e

′
2, . . . ,e

′
m) are (t, s)-

parallel errors, then the code C is called an (n,m, t, s, |C|)
P-code． �
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An (n, m, t, s, |C|) P-code is called an IP-code if C =
C1 × C2 × · · · × Cm where Ci is a subspace of GFn(q) and
called an (n,m, t, s, {k1, k2, . . . , km}) LIP-code if each line
code Ci is a linear code of the dimension ki.

We can generalize Theorems 1 and 2 to the general m
senders case.

Lemma 3 Let C0 be a subspace of GFn(q). Define a
code C to have codewords expressed as

c = (x + u1, x + u2, . . . , x + um) (23)

where x + ui ∈ Ci and x ∈ C0 for some C0 ⊆ GFn(q). A
code C is an (n,m, t, s, M) P-code iff the following condi-
tions hold:
(i) The common subcode C0 is a (t+s)-error correcting

code.
(ii) For any pair Ci and Cj , define

Zi,j = {ui − uj |x + ui ∈ Ci, x + uj ∈ Cj}. (24)

For any Ci, there exists some Cj , i �= j, such that Zi,j

is a linear (2s)-error correcting code. �

Theorem 3 Let C be an (n,m, t, s, M) P-code. We have
the following statements:
(i) The size of C is bounded by

M ≤ A(n, t + s) × A(n, 2s)(m−1). (25)

(ii) For M = A(n, t + s) × A(n, 2s)(m−1), there exists
an (n,m, t, s, M) P-code.

(Proof ) We will show a construction of an (n,m, t, s,M)
P-code whose cardinality achieves (ii). Choose a (t + s)-
error correcting code with the size A(n, t + s) as C1. We
also choose a (2s)-error correcting code U with the size
A(n, 2s). We set Ci = {x + u|x ∈ C1, u ∈ U} for 2 ≤ i ≤
m. Note that for any Ci, Zi,1 is an (2s)-error correcting
code and the condition (ii) of Lemma 3 holds. Then the
code C is an (n, m, t, s, M) P-code achieving M = |C| =
A(n, t + s) × A(n, 2s)(m−1). �

Now we consider LIP-codes. Let C1, . . . , Cm be linear
subspaces of GFn(q) and a code C be expressed as C =
C1 × C2 × · · · × Cm. We denote C0 =

⋂m
i=1 Ci.

Lemma 4 A code C is an (n,m, t, s, {k1, k2, . . . , km})
LIP-code iff the following conditions hold:
(i) The common subcode C0 is a linear (t + s)-error

correcting code.
(ii) For any Ci, there exist some Cj , i �= j, such that

Ci + Cj = {ci + cj | ci ∈ Ci, cj ∈ Cj} is a linear (2s)-
error correcting code. �

Theorem 4 For given positive integers n, t, s and
{k1, k2, . . . , km}, there exists an LIP-code such that

m∑
i=1

ki ≤ L(n, t + s) + (m − 1)L(n, 2s). (26)

(Proof ) We will show a construction of an
(n,m, t, s, {k1, k2, . . . , km}) LIP-code which satisfies
eq. (26) with equality. Choose a linear (t + s)-error
correcting code with the dimension L(n, t + s) as C1.
Choose a linear (2s)-error correcting code with the
dimension L(n, 2s) which includes C1 as its subcode and
set it to Ci, i ≥ 2. Then we have C0 =

⋂m
i=1 Ci = C1

which satisfies the condition (i) of Lemma 4. We can
see that for any Ci, i ≥ 2, we have C1 + Ci = Ci and the
condition (ii) of Lemma 3 holds. Then the code C is an
(n,m, t, s, {k1, k2, . . . , km}) LIP-code of the size

|C| = |C1| × |C2| × · · · × |Cm|
= qL(n,t+s)+(m−1)L(n,2s). (27)

Hence, the code C has the maximum achievable rate. �

VI. Conclusion

In this paper, we generalized the notion of the par-
allel channel proposed by Ahlswede et al. by allowing
some random errors besides a conventional parallel er-
ror. Then we derived necessary and sufficient conditions
for non-independent and linear independent parallel error
correcting codes. We showed some construction methods
for both non-independent and linear independent codes.
Decoding algorithms for these codes are based on those
of ordinary error correcting codes. Therefore, we can find
an efficient algorithm for linear parallel error correcting
codes.

As for future works, the probabilistic models of paral-
lel error should be discussed. Conditions of the optimal
independent parallel error correcting code for given n, t
and s is also to be derived.
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