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Decoding Performance of Linear Parallel Error Correcting Codes

Hideki Yagi~

Abstract— Parallel error correcting codes have been de-
vised for a new type of multiple access communication where
noises of each channel line are correlated each other. This
paper analyzes decoding performance of the parallel error
correcting codes. We first introduce a simple probabilistic
model of the channels. Then we define a notion of bounded
distance decoding over a parallel error channel and analyze
its performance.
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1 Introduction

Coding schemes for multiple access channels have
been well-studied [2. 3, 4. 5. 7]. Recently, R. Ahlswede
et al. have proposed a new class of multiple access chan-
nels [1]. This channel is called the parallel channel
and the codes for this channel is refereed to as parallel
error correcting codes.

The parallel channel is a bundle of m lines through
which m messages are transmitted parallelly. When
messages are transmitted through the channel. highly
correlated errors occur in respective lines. For example,
in a parallel port of a computer, messages are transmit-
ted through several lines simultaneously and disturbed
by correlated magnetic noise. etc. Namely, if an error
occurs in a line, the probability that an error occurs
in its neighbor lines becomes high. Ahlswede et al.
have focused on this fact and defined a t-parallel er-
ror which indicates the same errors with the Hamming
weight less than or equal to ¢ in all lines of the channel
[1). They have derived necessary and sufficient condi-
tions of code correcting the t-parallel error. They have
given code constructions of the optimal parallel error
correcting codes with the largest size for given a code
length and ¢.

Subsequently. Yagi et al. [10] have generalized par-
allel channels by allowing at most s random errors be-
sides the same errors in all lines. They have derived
necessary and sufficient conditions of parallel error cor-
recting codes for these channels. They have showed a
code construction that achieves the maximal achiev-
able rate (1, 5] of linear parallel error correcting codes
for a given code length. t and s. Their results simply
include those of Ahlswede et al. Although the codes
can correct any t-parallel error with s random errors,
there has been no performance analysis when more er-
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rors occur.

In this paper. we analyze decoding performance of
linear parallel error correcting codes. We first define
a notion of bounded distance decoding of parallel
channel. We then derive the probability of decoding
error and error detection of the bounded distance de-
coding. by assuming the number of lines is two. The
extension of general m (m > 3) is not so difficult.

This paper is organized as follows: in Sect. 2, we
briefly review channel model and parallel error correct-
ing codes. Next in Sect. 3, we define bounded distance
decoding for a parallel channel and derive the probabil-
ities of correction, decoding error and error detection.
Finally in Sect. 4, we give the concluding remarks.

2 Preliminary

In this section, we describe the channel model of
this paper and then briefly review the code construction
of the parallel error correcting codes in [10].

2.1 Model and Definitions

We denote input alphabets from two lines by A and
Y. In this paper, we assume that X’ and Y is a finite
field GF(q) where ¢ is a power of a prime.

Assume that a codeword of a code C C &A™ x V" of
length 2n is input to the parallel channel where the first
n symbols of the codeword are a line’s message and the
last n symbols of it are another line’s message. In the
channel. an error vector (e.€) € GF?"(q) occurs and
disturbs the input codeword. This pair of errors (e, €)
is refereed to as a (t.s)-parallel error if it satisfies
wy(e) <t+s, wy(e) <t+sand wy(e—€) <2s. In
this paper, we assume ¢ > s.

Definition 1 For linear subspaces Y C A™ and V C
" with k =dim(U/) and [ = dim(V). acodeC =U xV
is a collection of codewords ¢ = (u,v) such that u €
U,v € V. The code C is called a linear independent
(n,t,s.k.1) parallel error correcting code (LIP-
code) over GF(q) if there are no codewords ¢,c¢’ € C
satisfying

c+(e.€)=c +(e,€) (1)

where (e,¢) and (e’,€’) are (¢,s)-parallel errors. To
simplify notation, we sometimes denote just (n,s,t)
LIP-codes if the sizes k and [ are not necessary. o

The case of s = 0 is a channel model assumed in [1],
where a parallel error (e, €) satisfies e = €. Thus the
above model is a generalized version of that in [1] by
allowing s random errors in each line of the channel.

Throughout this paper, for any sets A € GF"(q)
and B € GF"*(q). we define an addition operation of
setsas A+ B ={a+blae Abe B}
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Figure 1: An example of the transition of a binary parallel
channel with parameters  and £ (£’ = £/2). The bold line,
the solid line, and the dashed line express the error free, the
random error, and the parallel error.

2.2 Probabilistic Description of Channel

In this paper, we analyze the decoding performance
of the parallel error correcting codes. For this pur-
pose. we introduce the probabilistic model of the par-
allel channels.

Assume that a codeword ¢ = (u.v) € C is trans-
mitted through the parallel channel and the received
sequence is denoted by ¢/ = (u,v) + (e,€). Let .0 <
1 € 1/2, be a probability of a channel error which oc-
curs both for u € U,v € V. ie. e = ¢ # 0. Let
£,0 < £ <1/2. express a probability of a channel error
which occurs for either u € or v € V. i.e.. ¢; #0 or
€; # 0. The probability of the error free for both u € Y
and v € Vis 1 — - £. Fig. 1 expresses an example
of the input-output transition of a binary (i.e.. ¢ = 2)
parallel channel with parameters n and £ (§' = £/2),
where (u.v) and (u'.v') express the input symbols and
the output symbols of the channel. respectively.

2.3 Parallel Error Correcting Code
We review code construction of LIP codes in [10].

Lemma 1 For two linear subspaces U and V, a code
C=UxVisan (n,t,s k.l) LIP-code with k& = dim(¥/)
and ! = dim(V) iff the following conditions hold:
(i) Let Co =UnNV. Then C; is a linear (¢ + s)-error
correcting code.
(i) U+V ={u+v|lueU. v €V}isa (2s)error
correcting code.

[Construction of LIP-Codes:]

We denote a set of k bases of the linear subspace Cy
by A= {a;.as..... ay}. Furthermore, we choose any
linear (2s)-error correcting code C’ of the dimension
k' = dim(C’) whose bases include .A. We denote other
k' — k bases of C’ by 3,.85....,B _r. Now we divide
{1,2 ..... k’—k} into a set Z; and 7, (With LN, = (0)
such that AU{8;|i € Z;} are bases of i and AU{G;]i €
T3} are bases of V. Setting C = U x V, the code C is
an (n,t.s. k. ko) LIP-code from Lemma 1.

For a LIP-code C by the above construction, we
denote a generator matrix of the code Cp by Gg. Sim-

ilarly, we denote a generator matrix of Uy and Vy by
G, and G, respectively. The sizes of Gy, G1.G2 are
k xn,(ky — k) x n,(k2 — k) x n, respectively. Let an
overall (k + k') x n generator matrix G of i + V be
arranged so that the first & rows form Gy, and the sub-
sequent k, — k rows form G;.

We here mention a decoding process of the LIP-
codes. Let Uy and Vy satisfy U = Cog + Uy and V =
Co + Vo, respectively. We here assume that a codeword
c=(u.v)=(x+uy,y+ve) €Cwithz,yeCyug€
Up and vg € Vp has been transmitted and a sequence
¢ = (v, v') = ¢+ (e,€) is received by the decoder
where (e, €) is a (¢, s)-parallel error.

[The Two-Stages Decoding Algorithm:]

(1-1) Calculate z = v' — u'.

(1-2) For z. perform a decoding algorithm for the code
U + V to find a codeword v — u and an error
pattern f =€ — e,

(2-1) Calculate

a=(ay,as,...,¢4+k-k) = (v —u)Gt (2

where GT = GT(GG7)~! is a generalized inverse
matrix! (Moore-Penrose pseudo-inverse matrix [8])
of G and calculate up = (ax41..... ax,-k)G1 €
Uy and vg = (akl_k“.. .. ,akx+k2_k)02 € V.
(2-1) Calculate u’ — uo and perform a decoding al-
gorithm for the code Cp by erasing symbols of
u’ — ug in the positions of {j|f; # 0} where
F=(1forooii fu)
(2-3) Calculate v’ — vy and perform a decoding al-
gorithm for the code Cy by erasing symbols of
v’ — vg in the positions of {j|f; # 0} where
f= (flvf2 ----- fn)~
The decoding algorithm consists of two-stages. The
steps of the first stage correspond to (1-1) and (1-2) and
the steps of the second stage are (2-1)-(2-3).

3 Performance of Bounded-Distance De-

coding
In this section. we analyze the performance of (n, t, s)
LIP-codes.

3.1 Bounded-Distance Decoding

We define bounded-distance decoding of (n.t, s) LIP-
codes.

Let 7 = |S(e) N S(e)l, ou = |S(e) \ (S(e) N S(e))|
and g, = |S(€) \ (S(e) N S(e))| where S(-) denotes
the support of a sequence. If a received sequence ¢’
is decoded by the two-stages decoding algorithm, we
can estimate not only (i, s)-parallel errors but any pair
(e.€) which satisfies

T+ r(Uu +0'v)/2] <t+s, (3)

Oy + 0y < 25, (4)

! The symbol T denotes transposition of a matrix.
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It can be easily seen that any (t.s)-parallel errors

satisfy both egs. (3) and (4).
Definition 2 Consider a decoding algorithm satisfy-
ing the following conditions:
(i) it can correctly estimate the parallel errors satis-
fying both egs. (3) and (4).
(ii) it miscorrects the parallel errors not satisfying
egs. (3) nor (4).
We call this decoding algorithm (¢, s)-bounded dis-
tance decoding (BDD) over parallel channels. o

When a received sequence ¢’ is decoded by an algo-
rithm of the BDD, the results are (1) we can correctly
decode the error (correction), (2) we cannot decode
the error but can detect it (error detection). and (3)
we misccrect the error (decoding error). In order to
analyze the performance of the (¢,s)-BDD, we have to
calculate probabilities of the above three cases.

It is apparent the decoding region of this algorithm
includes that of a (¢, s)-BDD algorithm since it satisfies
the condition (i). Then the question is if it performs
better than the (¢,s)-BDD. The following lemma and
proposition answer this question.

Lemma 2 If the first stage of the two-stages decoding
algorithm miscorrects the error, the two-stages decod-
ing cannot succeed.

Proposition 1 The two-stages decoding algorithm per-
forms as (t.s)-BDD.

(Proof) We will show the condition (ii} holds. If
the two-stages decoding miscorrects the error. either
of the following two cases holds: (a) the first stage
miscorrects it, or (b) the first stage succeeds. but the
second stage miscorrects it. From Lemma 2. if eq. (4)
does not hold and the first stage miscorrects the error,
the total decoding miscorrects it. If eq. (4) holds but
eq. (3) does not hold, the second stage miscorrects it.
Therefore the two-stages decoding algorithm satisfies
the condition (ii). a

3.2 Probability of Correction

If we want to calculate the probability of correc-
tion, it suffice to simply calculate the probability of
the events of egs. (3) and (4). It is apparent that the
probability of correction of the (¢, s)-BDD is given by

2s
PC = Z Pr (.Fc'j) Pr (£C|-7:C,j) (5)
=0
where Fc,; denotes a set of error patterns f =e—¢
(e € X,e € Y) satisfying eq. (4) and 6, +0, =j. and
Ec denotes a set of error patterns e € X satisfying eq.
(3).
We can obtain the probability Pr (F¢ ;) by

Pr(Foy) = (]) (1 - (6)

for 0 < j <2s.
We show the following proposition about the the
conditional probability Pr (¢|Fc,;)-

Proposition 2 Let ¢(¢,s,7) = (t +s) — [§/2]. Then
the conditional probability Pr (£¢|Fc,;) is given by

w(t”\j)

Pr (gclfc'j) = Z

(" Jia-ar

where 7 =7/(1 - £).

From eq. (5), we can calculate the probability P by
eqs. (6) and (7). Lemma 1 and eq. (5), (6) and (7) show
that the BDD over a parallel channel is regarded as a
combination of the two kinds of BDD over random error
channels. Namely. the first stage is BDD over a random
error channel with the crossover probability £ and the
second stage is one with the crossover probability 7.

3.3 Probability of Decoding Error

We here derive the probability of decoding error
of the two-stages decoding algorithm (BDD). The the
overall probability of decoding error of the two-stages
decoding algorithm is Pg = Pg ) & Pg) where PI(;)
denotes the probability of the first stage decoding error
and Pg) denotes the probability that the first stage
succeeds but the second stage miscorrects the error.

[Probability of the First Stage Error]

The derivation of the probability Pg) is the same as
that in a ¢g-ary random error channel with the crossover
probability £. For binary case, see [6], etc. We denote
the weight profile of the (2s)-error correcting code L{+V
by {A,}. where A; expresses the number of codewords
of the Hamming weight j.

For non-negative integers i. . 4. let 7(i. j, ) be a set
of two integers (41, v) such that v < p, 2u—vy=j—-i+4
and min{2n —i —j+~vi+j} 26 > |i - j|. The
probability of the first stage decoding error is given by

n  2s

PP = 3 SN E-e 04 (®)

i=23+1 j=14=0

where £ = £/(qg — 1) and

058 = )

(1, 7)€F(i,5,8)

GIEGS) o
(# v/ \é—u ©)
[Probability of the Second Stage Error]

We use the fact that if the first stage decoding suc-
ceeds and the decoding in the step (2-2) succeeds, then
the decoding in the step (2-3) also succeeds. The prob-
ability of the second stage decoding error can be ob-
tained by deriving the probability of the decoding error
in the step (2-2).

Assume that the first stage decoding succeeds and
we correctly obtain f = e — €. Define 0 = wy(f).
Let B; ) denote a set of error patterns e € X with the
Hamming weight wy(e) = i and |S(e)NS(f)| = A in
a decoding region of other codewords x € Cp than the

(g-2)"(g—1)°*
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Figure 2: Probabilities of decoding error and decoding fail-
ure with for (7.2,1) and (15.4,2) LIP codes.

transmitted codeword. We denote the weight profile
of the (t + s)-error correcting code Cy by {A;}. where
A j expresses the number of codewords of the Hamming
weight j. For non-negative integers i;. j., 6, and i,,. ju,
0w, let Fo(i,.5,.0,) for v € {z.w} be a set of two
integers (u,.7, ) such that p, > V.. 24, =7, = ju —in+
0, and min{2n, —i, — ju +., i, +ju} 2 6, > lin — -
Define n, = n — o0, ny, = 0. and

wu(iu‘jw‘sv) = Z

(B Y0 )EFL (i ] u60)

()G )
for v € {z.w}.

Then the probability of the second-stage error is
given by

2s n
PI(:’Z) — Z Z iBi,,\T_]i_AEU(l —n- 's)n-d—i+¢\

o=0i=t+s+1A=0
(11)

(@=2)"(g - )%

where 77 = n/(q — 1) and

n

e 555 ()(0)

=1 jw=046=04,=0

xwz‘(i - /\v.] - jwr‘s - ‘sw)d}w(/\yjuh ‘sw)fij- (12)

3.4 Numerical Examples

We illustrate the probabilities of BDD over a par-
allel channel, using (7.2.1.1.3) and (15.4.2,3.7) LIP
codes whose constituent codes are maximum-distance
separable (MDS) codes [6, 9]. We show the decoding
error probability and the decoding failure probability
(i-e.. the sum of probabilities of decoding error and er-
ror detection) for the both codes in Fig. 2. We set
&/n = 1/2 and the horizontal axis indicates the sum of
the channel error rates (5 + £).

4 Conclusion
In this paper. we analyzed the decoding perfor-
mance of the generalized parallel error correcting codes

devised by Ahlswede et al. and Yagi et al. We first
introduced a probabilistic model of parallel channels.
We showed that the two-stages decoding algorithm for
the parallel error correcting codes is a combination of
BDD over random error channels. Then we can use
conventional analytical techniques for a random error
channel to analyze the decoding performance. We de-
rived the probabilities of correction and decoding error
(and hence, error detection).

As for future works, the maximum likelihood decod-
ing performance of the parallel error correcting codes
should be derived.
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