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Abstract

Two decoding algorithms of LDPC codes over the bi-
nary erasure channel are presented. These algorithms
continue the decoding procedure after the BP decod-
ing algorithm fails. Since the proposed decoding algo-
rithms also use the sparse structure of the parity-check
matrix of LDPC codes, the increase of decoding com-
plexity of these algorithms is slightly larger compared
to that of the BP decoding algorithm. We show by
simulation results that the performance of the proposed
decoding algorithms is much superior to that of the BP
decoding algorithm.

1. Introduction

The combination of the LDPC codes with the belief
propagation (BP) decoding algorithm has high perfor-
mance with low decoding complexity [1], [2]. It is well
known that the BP decoding over the binary erasure
channel (BEC) cannot decode whenever a subset of the
erased bit positions contains a stopping set [3]. To
overcome a decoding failure caused by a stopping set,
two approaches have been studied by many researchers.
The first approach is adding the redundant rows and
columns for a given parity-check matrix of the code
to improve the performance of the BP decoding. This
approach is taken by K. Kasai et al. [6], S. Sankara-
narayanan and B. Vasic [8], and N. Kobayashi et al.
[9]. The second one is performing the additional proce-
dure after the BP decoding algorithm fails in decoding.
This approach is taken by H. Pishro-Nik and F. Fekri
[4], the present authors [7], and B. N. Vellambi and
F. Fekri [10]. The decoding algorithms in [4] and [10]
guess the erased bits for some value to correct erased
bits. The decoding algorithm in [7] needs to substitute

This work is partially supported by Waseda University Grant
for Special Research Project No. 2005B-189 and No. 2006B-293.

the equation which requires only small increament of
the docoding complexity.

The main difference of these two approaches is as
follows: The first approach needs to perform the ad-
ditions of redundant rows and columns for the parity-
check matrix, so it needs the procedure of construct-
ing the redundant parity-check matrix only one time
before transmitting the codewords. The performance
of the BP decoding algorithm by using the redundant
parity-check matrix is better than by using the original
one, but it is only effective for codes with short length.
On the other hand, the second approach needs to per-
form additional decoding procedure, so this procedure
is always needed for each received sequence. The per-
formance of these improved BP decoding algorithms
are significantly superior to that of the BP decoding
algorithm [2] for codes with various length.

In this paper, we propose two decoding algorithms
of LDPC codes over the binary erasure channel (BEC)
which do not need the guessing procedures. The pro-
posed decoding algorithms are also an iterative one us-
ing the sparse structure of the parity-check matrix of
LDPC codes. We show by simulation results that the
proposed decoding algorithms can attain a smaller bit
erasure rate than the BP decoding algorithm with a
little increase of the decoding complexity.

This paper is organized as follows. In Section 2,
we describe LDPC codes, decoding for the BEC, and
the BP decoding algorithm. In Section 3, we describe
the proposed decoding algorithms. We mention the
related works of the proposed decoding algorithms in
Section 3.1. An overview and procedure of the decoding
algorithm A are presented in Section 3.2 and we give
some correctable condition of the decoding algorithm A
in Section 3.3. The decoding algorithm B is presented
in Section 3.4. Finally, some simulation results and
discussions are presented in Section 4 and concluding
remarks are given in Section 5.
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2. Preliminaries

2.1. LDPC Codes

Let c = (c1, c2, . . . , cN ) ∈ {0, 1}N be a codeword of
LDPC codes and H = [Hmn], m ∈ [1, M ], n ∈ [1, N ],
cHT = 0, be a parity-check matrix whose row and
column lengths are M and N , respectively1. In this
paper, we consider binary LDPC codes for simplify the
discussion. Let λi and ρi denote the fraction of el-
ement ones in H which are in columns and rows for
weight i, respectively, and λ(x) ! ∑∞

i=2 λixi−1 and
ρ(x) ! ∑∞

i=2 ρixi−1 be weight distributions of rows
and columns of ones in H, respectively. LDPC codes
are characterized by C

(
N, λ(x), ρ(x)

)
. The number of

rows M is given by M = N
R 1
0 ρ(x)dxR 1
0 λ(x)dx

and designed rate

R′ is given by R′ = 1 − M
N . The rate of the codes R

satisfies R ≤ R′ since H is not guaranteed to be a full
rank matrix.

We define a loop of length 2L, L ≥ 2 in H as a
closed path consitituting of the elments 1 in H at the
positions (m1, n1), (m1, n2), (m2, n2), . . ., (mL, nL),
and (mL, n1) where m1 %= m2 %= . . . %= mL and n1 %=
n2 %= . . . %= nL. For an example, the element ones at
the positions (m1, n1), (m1, n2), (m2, n2), and (m2, n1)
form a loop of length 4.

2.2. Decoding for the BEC

We assume a codeword c is transmitted through the
BEC. c is disturbed by the sequence from the channel
e = (e1, e2, . . . , eN ) ∈ {0, ε}N where ε denotes an era-
sure, and the decoder receives a sequence y = c + e.
The addition of a binary bit and the erasure bit are de-
fined as 0+ ε = ε and 1+ ε = ε. Therefore, the received
bits are either erased or known bits.

Let N ∈ [1, N ] be an index set of the codeword bits
or these of the columns in H. And let E ∈ N and
Ē = N \ E be the index sets of the erased bits and
the known bits, respectively. From the definition of a
parity-check matrix H, we can write

cHT = cEH
T
E + cĒH

T
Ē = 0, (1)

where cE is a subvector of c whose elements are indexed
by E , and HT

E is asubmatrix whose column positions are
indexed by E . Since cĒH

T
Ē is known to a receiver and

from Eq.(1),

cEH
T
E = cĒH

T
Ē = sE , (2)

where sE = (sE
1 , sE

2 , . . . , sE
M ) ∈ {0, 1}M is a syndrome

sequence calculated by cĒH
T
Ē . Therefore, decoding for

1For two integers i and j (i ≤ j), [i, j] denotes the set of
integers from i to j.

the BEC is to solve the erased (unknown) sequence cE
from the simultaneous equations cEHT

E = sE . Since c
is a codeword, cE has at least one solution. If cE has
multiple solutions, then it cannot be corrected which
causes to decoding failure.

2.3. BP Decoding Algorithm [2]

We define the following sets for all (m,n) such that
Hmn = 1.

A(m) %= {n | Hmn = 1}, B(n) %= {m | Hmn = 1}.

Let AE(m) = {A(m) ∩ E}, m ∈ [1, M ] be an index set
of the erased bit positions at row m in HE . Therefore,
we can rewrite cEHT

E = sE as
∑

i∈AE(m)

ci = sE
m, m ∈ [1,M ]. (3)

Note that ci, i ∈ AE(m) are not known to the receiver
and from Eq. (2), sE

m is obtained by calculating

sE
m =

∑

i∈A(m)\AE(m)

ci. (4)

From Eq. (4), BP decoding algorithm can correct the
erased bit ci, i ∈ AE(m) if |AE(m)| = 1. The algorithm
can continue the above procedure until all erased bits
are corrected or there is no m satisfying |AE(m)| = 1.

The BP decoding algorithm over the BEC is con-
stituted by the following procedures:

[BP Decoding Algorithm over the BEC]
B1) For m ∈ [1,M ], set ΨB(m) := AE(m) and

sB(m) = sE
m. EB := E .

B2) If there exists m ∈ [1, M ] satisfying |ΨB(m)| = 1,
then go to B3). Otherwise the algorithm fails to stop.

B3) For m ∈ [1,M ] such that |ΨB(m)| = 1, perform
the followings.
B3-1) Set ci := sB(m) and EB := EB \ i.
B3-2) For m′ ∈ B(i) \m, set

ΨB(m′) := ΨB(m′) \ i,

sB(m′) := sB(m′) + sB(m).

B4) If EB %= φ, then go to B2). Otherwise the algo-
rithm successfully finishes to decode. !

The BP decoding algorithm on the BEC fails when
a subset of the erased bit positions contains a stopping
set.
Definition 1. [Stopping set [3]] Choose some columns
of H to make a submatrix. A stopping set S ∈ E is a
subset of the erased bit positions such that the weights
of all rows in the submatrix HS of H, whose column
positions are indexed by S, are at least two2. !

2Notice that we do not consider the rows of weight zero.
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In the procedure B2) at the BP decoding algo-
rithm, the algorithm stops when there does not exist
m ∈ [1,M ] satisfying ΨB(m) = 1. At this time, all
rows of the submatrix of H whose column postions are
indexed by EB , are at least two. Threfore EB contains
a stopping set3 S.

3. Proposed Decoding Algorithms

In this section, we propose two decoding algorithms
of LDPC codes over the BEC which utilize the decoding
procedure after the BP decoding algorithm fails.

3.1. Relation with Other Methods

To overcome a decoding failure caused by a stopping
set, two approaches have been studied.

The first approach is adding the redundant rows
and columns for a given parity-check matrix of the code
to improve the performance of the BP decoding [6],
[8], [9]. The second one is performing the additional
procedure after the BP decoding algorithm fails [4],
[7], [10].

The first approach needs to add the redundant rows
or columns for the parity-check matrix before transmi-
tion, therefore it needs only once. The key idea is to
make the small size of the stopping set be a large value
by adding rows or columns for H. When adding rows
or columns, this method needs to investigate the loops
in H as possible. And its computational complexity is
large when we look for large length of loops. There-
fore it usually take into account only the loops with
short length and the performance by this method can
be improved only for the codes only with short length.

On the other hand, the second approach needs
to perform additional decoding procedure, therefore
this procedures are always needed for each received
sequence. The decoding performance of these im-
proved BP decoding algorithms are significantly better
than that of the ordinaly BP decoding algorithm for
codes with various length. The decoding algorithms by
Pishro-Nik and Fekri [4] and Vellambi and Fekri [10]
guess the values of erased bits (0 or 1) which are not
corrected by the BP decoding algorithm. Clearly the
performance of these algorithms depends on the num-
ber of guessed bits and the way of choosing these bits.

In this section, we propose two decoding algorithms
which do not need the guessing procedures.

3.2. Decoding Algorithm A

The decoding algorithm A continues the decoding
procedure after the BP decoding algorithm fails.

3Note that at this time, EB equals to the set of erased bit po-
sitions which cannot be corrected by the BP decoding algorithm.

Let cEB is a subvector of c whose elements are
indexed by EB , and HEB is a submatrix whose col-
umn positions are indexed by EB . Let sP = cEB

HT
EB

where sP = (sP
1 , sP

2 , . . . , sP
M ) ∈ {0, 1}M . The decod-

ing algorithm A tries to solve a simultaneous equation
cEBHT

EB
= sP . From the Definition 1, weights of all

rows in HEB are at least two since EB contains a stop-
ping set S. Let AP(m) = {A(m) ∩ EB}, m ∈ [1,M ],
be an index set of erased bit positions at row m in
HEB . The inequality |AP(m)| ≥ 2 always holds from
the Definition 1.

At first, we choose row m satisfying |AP(m)| = 2.
We here assume that AP(m) = {i1, i2} where B(i1) ≥
B(i2). Notice that choosing either i1 or i2 does not
influence on the decoding result. In a view-point of the
simultaneous equation cEBHT

EB
= sP , the equaiton we

choose can be written as follows:

ci2 = ci1 + sP
m.

Next, we substitute the above equation to the other
equations that have element at i2. The equation that
we used to substitute will never be used in a substitu-
tion procedure. This substitution procedure sometimes
makes an erased bit to a known bit. The procedure con-
tinues until all erased bits are corrected or the number
of elements in all the equations that are not used in
substitution procedures, are at least three.

The decoding algorithm A is constituted by the
following procedures after the BP decoding algorithm
fails:
[Decoding Algorithm A]
P1) For any m ∈ [1, M ], set ΨP (m) := AP(m) and

sP (m) := sP
m. For n ∈ EB , set ∆P (n) := B(n). Set

EP := EB , MP :∈ {m | m = [1,M ], |ΨP (m)| ≥ 2}.
P2) If there does not exist m ∈ MP satisfying
|ΨP (m)| = 2 or |ΨP (m)| = 1, then the algorithm
fails. If there exists m ∈MP satisfying |ΨP (m)| = 1,
then go to P4). Otherwise (If there exists m ∈MP

satisfying |ΨP (m)| = 2), go to P3).
P3) For m ∈MP satisfying |ΨP (m)| = 2, perform the

followings:
P3-1) For m′ ∈ ∆P (j) where ΨP (m) = {i, j},
|∆P (i)| ≥ |∆P (j)|, set

ΨP (m′) := {ΨP (m′) \ j} ∪ i,

sP (m′) := sP (m′) + sP (m).

.
P3-2) Set ∆P (i) := {∆P (i)\m}∪{∆P (j)\m} and

set MP := MP \ m. If ∆P (i) has the same ele-
ments, then remove all of them from ∆P (i).

P4) For m ∈ [1,M ] such that |ΨP (m)| = 1, perform
the followings.
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Figure 1: An example of the assumption in the proof
of Theorem 1. (a): The positions (m1, n1), (m1, n2),
(m2, n2), . . ., (mL, nL), and (mL, n1) form a loop of
length 2L. (b): The result after substituting the equa-
tion m1. (c): The result before substituting the equa-
tion mL−1. (d): The result after substituting equation
mL−1. We can obtain erased bit at position n∗.

P4-1) Set ci := sP (m) and EP := EP \ i where i =
ΨP (m).

P4-2) For m′ ∈ P(i) \m, set

ΨP (m′) := ΨP (m′) \ i,

sP (m′) := sP (m′) + sP (m).

P5) If EP %= ∅, then go to P2). Otherwise the algo-
rithm successfully finishes. !

3.3. Correctable Condition for an Erased Bit by
the Decoding Algorithm A

In this section, we show the condition that the pro-
posed decoding algorithm can correct an erased bit.
Lemma 1. ([5]) The submatrix HS of a parity-check
matrix H has at least one loop when wc ≥ 2. !

The above lemma shows that if there is no loops in
a submatrix of H, then the index set of bit postions of
this submatrix is not a stopping set. Therefore the key
idea of the proposed decoding algorithm is to eliminate
loops in HS . The substituition procedure sometimes
makes |ΨP (m)| = 1 and we calculate an erased bit at
position i = ΨP (m). The condition of the proposed
decoding algorithm can produce a known bit, which is
not corrected by the BP decoding algorithm, is shown
by the following Theorem.
Theorem 1. Assume that a loop of length 2L, L ≥
2, is contained in HS . Let the positions of this
loop be (m1, n1), (m1, n2), (m2, n2), . . ., (mL, nL),
and (mL, n1). We set ML = {m1,m2, . . . ,mL} and

NL = {n1, n2, . . . , nL}. The decoding algorithm A
can correct an erased bit n∗ iff there exist only one
m′ ∈ML such that |ΨP (m′) = 3|, ΨP (m′) \ n∗ ⊆ NL,
and n∗ ∈ ΨP (m′) and other m ∈ ML \ m′ satisfy
|ΨP (m) = 2|, m ∈ML, and ΨP (m) ⊆ NL.

Proof. We assume that m′ = mL. Therefore
|ΨP (mL)| = 3, |ΨP (m)| = 2, m ∈ ML \ mL, and
ΨP (mL) ∈ {n1, nL, n∗} hold. An example of the above
assumption is shown in Fig. 1 (a). This assumption is
valid even if m′ is other value choosen from ML.

We substitute equation m1 to the other equations
having element at position j = n2 and ΨP (m2) is
rewritten from {n2, n3} to {n1, n3}. We can see this
result in Fig. 1 (b). We subsitute equations m2, m3,
. . ., mL−1 in order and obtain ΨP (mL) = n∗. There-
fore we calculate an erased bit at position n∗. We can
see the result before substituting mL−1th equation in
Fig. 1 (c) and after substituting it in Fig. 1 (d).

Conversely, we consider the situation that the sub-
stituting the equation (with two elements) can produce
the resulting equation with one bit. We assume that
the erased bit at position n∗ in the equation mL is cor-
rected by substituting the equation mL−1. Therefore
|ΨP (mL−1)| = 2 and |ΨP (mL)| ≥ 3 are always hold be-
fore substituiting the equation mL. But |ΨP (mL)| = 3
holds since it must become |ΨP (mL)| = 1 after substi-
tuiting the equation mL. An example of this situation
can be seen in Fig. 1 (c) where this is the case of L = 2.
The cases of L ≥ 3 are obviously proven.

3.4. Decoding Algorithm B

The decoding algorithm B continues the decoding
procedure after the algorithm A fails. At this time, we
set ΨP (m) := ΨQ(m) and MQ := MP . The matrix
HQ whose row index sets are ΨP (m), m ∈ MP , con-
tains many short loops in common. The size of the
matrix HQ is |MP |× | ∪m∈MP ΨP (m)|.

First the algorithm investigates the loops of short
length in the matrix HQ, then the row index sets for
each loop are obtained. Next the set of row vectors HQ1

are produced by linearly combiding the row vectors of
HQ indexed by the above row index sets. These rows
are concatenated to HQ and we obtain a new matrix
H1

Q such that

H1
Q =

[
HQ

HQ1

]
. (5)

If H1
Q has a row of weight two, then we go back to

the decoding algorithm A for H1
Q. If the decoding al-

gorithm A stops in failure, we again proceed the same
procedure. These procedures continues until all the
erased bits are corrected. If the algorithm cannot pro-
duce a new row vector or the number of iterations of the
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above procedures reaches pre-determined value, then
the algorithm fails.

4. Simulation Results

4.1. Conditions for Simulation

In order to show the performance of the proposed
decoding algorithms, we show the simulation results.
We construct codes C1 and C2 which are denoted by
C1

(
N1,λ1(x), ρ1(x)

)
and C2

(
N2,λ2(x), ρ2(x)

)
such that

N1 = 1000, λ1(x) = x2, ρ1(x) = x5, (6)

N2 = 1000, λ2(x) = 0.0769x + 0.6923x2 + 0.2308x5,
ρ2(x) = 0.46135x5 + 0.53865x6. (7)

The designed rate of these codes are one half.
We compare the BP decoding algorithm [2] (de-

noted by “BP”), the decoding algorithm A (denoted
by “PropA”), and the decoding algorithm B (denoted
by “PropB”). For each decoding algorithm, we trans-
mit at least 108 codewords over the BEC with channel
erasure probability p until 50 codewords are failed in
decoding. In “PropB” we repeate the procedure of in-
vestigating the loops of length 4 twice for each received
sequence.

We evaluate them by (i) decoding performance as
bit erasure rate (BER) and (ii) decoding complexity
as the number of Exclusive OR operations needed for
decoding.

4.2. Decoding Results and Discussions

4.2.1. Decoding Performance

Figs. 2 and 3 show the decoding performance for the
Code C1 and the C2, respectively. The horizontal axis
and the vertical axis represent the erasure probability
of the BEC and BER, respectively.

From Figures. 2 and 3, the performance of both
proposed decoding algorithms are superior to that of
the “BP”. In Fig. 3 at p = 0.36, the BER of the
“PropA” is 100 times smaller than that of the “BP”
and that of the “PropB” is 1000 times smaller than
that of the “BP”, respectively.

We confirm that there is no significant difference of
behavior between BER and the word erasure rate.

4.2.2. Decoding Complexity

The “PropB” can be divided into the following
parts of the procedures.
(A) The procedure of computing sE by cĒH
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Figure 2: Decoding result of the Code C1
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Figure 3: Decoding result of the Code B

(B) The procedure of the “BP”
(C) The procedure of the “PropA” after the “BP” fails
(D) The procedure of the “PropB” after the “PropA”

fails except finding the loops of length 4
(E) The procedure of finding the loops in the “PropB”
Clearly the combination of the procedures (A) and (B)
equals to the “BP” and the combination of the proce-
dures (A) ∼ (C) equals to the “PropA”.

Tables 1 and 3 show the average number of decod-
ing operations of decoding procedures (A) ∼ (E) for
the Code C1 and the Code C2, respectively. Tables 2
and 4 show the average number of Exclusive OR op-
erations needed for decoding algorithms of the Code
C1 and the Code C2, respectively. Notice that we here
average the number of computational operations of de-
coding algorithms over all the transmitted sequences.
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Table 1: The number of Exclusive OR operations of
each procedure for the Code C1

p (A) (B) (C) (D) (E)

0.35 700 700 948.7 1312.3 3675.7
0.36 719.9 719.9 975 1281.5 3616.8
0.38 757 757 1010.8 1187.2 3661.4
0.4 755.5 755.2 1003.9 1006.1 3725.9
0.42 643.4 641 980.3 799.4 3698.1
0.44 420.9 412.1 828.5 540.8 3652.2

Table 2: The average number of Exclusive OR opera-
tions needed by both decoding algorithms for the Code
C1

p BP PropA PropB

0.35 1399.9 1400 1400
0.36 1439.8 1440 1440
0.38 1514 1520.8 1525.4
0.4 1510.7 1604.4 1737.2
0.42 1284.4 1647.7 2535.2
0.44 833 1477.4 4145.7

From these tables, “PropA” and “PropB” need
slightly more operations than “BP”. Both of these al-
gorithms need much more operations than “BP” as p
takes large value. From Tables 1 and 3, the procedure
(E) dominates much times in the “PropB”. In proce-
dure (E), we only invesitagate the loops of length 4.
The computational complexity of the procedure (E) is
O({dmaxcmax}l) where dmax and cmax represent the
maximum weights of rows and columns, respectively if
we look for the loops of length l. Therefore the compu-
tational complexity of the “PropB” grows large if we
look for loops with long length.

5. Concluding Remarks

We have proposed new iterative decoding algo-
rithms of LDPC codes over the BEC. From simulation
results, BER of the proposed decoding algorithms are
much lower than that of the BP decoding algorithm.
They have a favorable trade-off between BER and com-
plexity when the channel erasure probability is a small
value.

References

[1] R. G. Gallager, “Low density parity check codes,” IRE
Trans. Inform. Theory, vol.8, pp.21–28, Jan. 1962.

[2] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D.
A. Spielman, “Efficient erasure correcting codes,” IEEE
Trans. Inform. Theory, vol. 47, no.2, pp.569–584, Feb.
2001.

Table 3: The number of Exclusive OR operations of
each procedure for the Code C2

p (A) (B) (C) (D) (E)

0.36 810 810 1014.5 2139.4 7109.1
0.38 854.1 854.1 1071.5 1978.4 6630.1
0.4 881.4 881.4 1095.4 1725.8 6224.7
0.42 809.1 808.3 1059.4 1443.3 6363.9
0.44 610.7 606 981.5 1268.7 6901.1

Table 4: The average number of Exclusive OR opera-
tions needed by both decoding algorithms for the Code
C2

p BP PropA PropB

0.36 1619.9 1620 1620
0.38 1708.1 1710 1711.1
0.4 1762.8 1799.8 1845.1
0.42 1617.5 1855.1 2526.5
0.44 1216.7 1782 4590.3

[3] C. Di, D. Proietti, I. E. Telatar, T. J. Richardson, and R.
L. Urbanke, “Finite-length analysis of low-density parity-
check codes on the binary erasure channel,” IEEE Trans.
Inform. Theory, vol. 48, no. 6, pp. 1570–1579, June 2002.

[4] H. Pishro-Nik and F. Fekri, “On decoding of low-density
parity-check codes over the binary-erasure channel,” IEEE
Trans. Inform. Theory, vol. 50, no.3, pp.439–454, March
2004.

[5] T. Tian, C. Jones, J. D. Villasenor, and R. D. Wesel, “Selec-
tive avoidance of cycles in irregular LDPC code construc-
tion,” IEEE Trans. Commun., vol. 52, no. 8, pp. 1242–
1247, Aug. 2004.

[6] K. Kasai, T. Shibuya, and K. Sakaniwa, “A code-equivalent
transformation removing cycles of lenght four in Tanner
graphs,” (in Japanese) IEICE Technical Report, vol.104,
no.302, IT2004-42, pp.25–30, Sept. 2004.

[7] G. Hosoya, T. Matsushima, and S. hirasawa, “A decod-
ing method of low-density parity-check codes over the bi-
nary erasure channel,” Proc. 27th Symposium on Informa-
tion Theory and its Applications (SITA2004), pp. 263-266,
Gero, Japan, Dec. 2004.

[8] S. Sankaranarayanan and B. Vasic, “Iterative decoding
of linear block codes: A parity-check orthogonalization
approach,” IEEE Trans. Inform. Theory, vol. 51, no.9,
pp.3347–3353, Sept. 2005.

[9] N. Kobayashi, T. Matsushima, and S. Hirasawa, “Trans-
formation of a parity-check matrix for a message-passing
algorithm over the BEC,” IEICE Trans. Fundamentals,
vol.E89-A, no.5, pp.1299–1306, May 2006.

[10] B. N. Vellambi and F. Fekri, “Results on the improved
decoding algorithm for low-density parity-check codes over
the binary erasure channel,” IEEE Trans. Inform. Theory,
vol. 53, no.4, pp.1510–1520, April 2007.

- 159 -


	Proceedings cover
	Table of contents

