
2007 Hawaii and SITA Joint Conference on Information Theory, HISC2007
Hawaii, USA, May 29–31, 2007

Shortening Methods of Collusion-Secure Codes for Digital Fingerprinting

Hideki YAGI∗, Toshiyasu MATSUSHIMA† and Shigeichi HIRASAWA†

∗ Media Network Center
Waseda University

1-104 Totsuka-Machi, Shinjuku-ku,
Tokyo, 169-8050 Japan

E-mail: yagi@hirasa.mgmt.waseda.ac.jp

† School of Science and Engineering
Waseda University

3-4-1 Ohkubo, Shinjuku-ku,
Tokyo, 169-8555 Japan

Abstract

In this paper, code construction for digital fingerprint-
ing is considered. Digital fingerprinting is a copyright
protection technique of digital contents. For digital fin-
gerprinting, measures against collusion attacks, where
several fingerprinted copies of the same content are
mixed to disturb their fingerprints, should be taken. In
this paper, we propose shortening methods of collusion-
secure fingerprinting codes based on finite geometries
(FGs). These methods reduce the code lengths but in-
crease the coding rates of conventional collusion-secure
codes with keeping the codes’ resilience. Due to the
new fingerprinting codes, the system can deal with a
larger number of users to distribute a digital content.

1. Introduction

In recent years, with the high advances of digital
technologies, a large amount of digital contents can be
processed by computers. Protecting the copyrights of
digital contents has been an important problem to be
solved. As one of the most prominent solutions, dig-
ital fingerprinting has attracted a great deal of at-
tention. The digital fingerprinting embeds a user’s ID
called a fingerprint into an original content with a
watermarking technique and the fingerprinted contents
are distributed to users.

Digital fingerprinting requires robustness against
collusion attacks, in which more than one illicit user
colludes to take illegal actions to the distributed con-
tents. One of the well-known collusion attacks are
the interleaving attack [1, 3, 6] and the averag-
ing attack [3, 8, 9, 10, 11, 12]. W. Trappe et al.
have devised collusion-secure codes against the averag-
ing attack by using incident matrices of block designs
[8], which is equivalent to regular low-density parity
check (LDPC) matrices without cycles of length four
[4]. The collusion-secure codes devised by Trappe et
al. are called anti-collusion (AC) codes [8, 9]. Subse-
quently, Yagi et al. have proposed a method for increas-
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ing coding rates of Trappe’s AC codes based on finite
geometries [10, 12]. Although these codes can guar-
antee to capture colluders if the number of colluders
is smaller than a designed value, the code length be-
comes larger, which causes degradation of the original
content.

In this study we propose shortening methods of
AC codes devised in [8] and [10, 12] while their num-
ber of codewords and security are maintained. Conse-
quently, we can realize a fingerprinting system which
gives smaller distortion to distributed contents.

2. Fingerprinting Model
2.1. Digital Fingerprinting

When distributing a digital content to users, a code-
word corresponding to each user is embedded into the
original content by a watermarking technique. The
codeword arranged for each user is called the user’s fin-
gerprint. Some illicit users may collude and attempt
to disturb their fingerprints so that their fingerprints
are not revealed from an illegally utilized content. This
action is called a collusion attack. The detector of
colluders estimates colluders’ fingerprints from the dis-
turbed fingerprint.

Let Γ = {1, 2, . . . , |Γ|} be a set of users of a digital
content and we denote a codeword to the user j ∈ Γ by
bj = (bj1, bj2, . . . , bjN )T ∈ {0, 1}N , where T denotes
the transposition. The fingerprint watermark wj is
created by using N orthogonal bases {ui ∈ RM | i =
1, 2, . . . , N} with the unit energy and a codeword bj as

wj =
N∑

i=1

(2bij − 1)ui. (1)

Next, regarding the distributed content to users as the
host signal, the created watermark signal is embedded
into it. Denoting the host signal by a vector x ∈ RM ,
the distributed content to a user j ∈ Γ is1 yj = x +
wj ∈ RM .

1More precisely, each wj is multiplied by some value called
Just-Difference Noticeable (JDN) coefficient [5], before it is
added to the host signal.
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Since the fingerprint is embedded with a watermark
technique, any user cannot detect their own fingerprint
wj from the watermarked content yj . Therefore illicit
users may collude to disturb their fingerprints by cre-
ating an illegal content from their distributed contents.

2.2. Assumed Collusion Attack

We consider a set of colluders with the size h ≥ 1,
denoted by Sc ⊆ Γ, and without loss of generality, we
assume Sc = {1, 2, . . . , h}. The attacked host signal by
a set of colluders Sc is expressed as

y =
1
h

h∑

j=1

yj = x +
1
h

h∑

j=1

N∑

i=1

(2bij − 1)ui. (2)

The detector of the colluders estimates the set of col-
luders Sc from the attacked host signal y ∈ RM . This
attack is called the averaging attack, which is one of
well-known collusion attacks2 [3, 8, 9, 11, 12].

3. Anti-Collusion Codes against Averaging At-
tack

3.1. General Class of AC Codes

Trappe et al. [8] and Yagi et al. [10, 12] have de-
vised anti-collusion (AC) codes. First, we introduce
the definition of the AC codes.

Definition 1 Assume that the host signal x is known
to the detector. If the size of a set of colluders Sc

satisfies |Sc| ≤ ! for some positive integer !, the code
which can reveal all the colluders of Sc is referred to
as an !-resilient AC code. The parameter ! is called
the resilience of the AC codes. !

Consider a binary matrix B whose codewords have
a Hamming weight greater than or equal to k and whose
two distinct codewords have at most t “1-components”
for some integer t ≥ 1. Let &v' for a real number v
express the minimum integer not less than v.

Lemma 1 ([10, 12]) Assume a binary matrix to sat-
isfy (i) the Hamming weight of each column is at least
k, and (ii) any pair of distinct two columns has at most
t 1-components in common. Then, the AC code whose
codewords are all column vectors of this matrix is a
(&k/t' − 1)-resilient AC code. i.e., if |Sc| ≤ &k/t' − 1,
any set of colluders Sc can be uniquely detected. !

If t = 1, the matrix B is called an LDPC matrix with-
out cycles of length four [4], and the !-resilient AC
codes in [8] are contained in this class.

We here consider a mechanism for detecting a set
of colluders by using an !-resilient AC code.

Remark 1 Let Q(Sc) be a set of symbol positions
where any fingerprints in Sc equally take the 0-
component. Then an !-resilient AC code in [8, 10, 12]
uniquely identifies the set Q(Sc) for any Sc with |Sc| ≤
!. !

From Remark 1, since an !-resilient AC code
uniquely identifies Q(Sc) for any Sc of the size less than
or equal to !, the code reveals the set of colluders Sc.
For a detailed procedure of decoding algorithm, refer
to [8].

3.2. Special Class of AC Codes Based on Finite
Geometries

We review a subclass of !-resilient AC codes based-
on finite geometry [10, 12].

For a prime p and two positive integers m and s
(m ≥ 2, s ≥ 1), the m-dimensional Euclidean ge-
ometry EG(m, ps) over a Galois field GF(ps) consists
of points, lines, and hyperplanes. Any points in
EG(m, ps) are pms m-dimensional vector over GF(ps),
and they form an m-dimensional vector space V over
GF(ps). For µ such that 0 ≤ µ ≤ m, since a µ-
dimensional hyperplane (generally, called a µ-flat) is
a µ-dimensional subspace of V and its cosets, any µ-
flat contains pµs points. Points and lines correspond to
0-flats and 1-flats, respectively.

For a given µ < m, let a0, a1, . . . , aµ be µ + 1 lin-
ear independent points over EG(m, ps). Then using µ
elements β1, β2, . . . , βµ of GF(ps), pµs points given by

a0 + β1a1 + β2a2 + · · ·+ βµaµ (3)

forms a µ-flat.
Any pair of two µ-flats, (F1, F2), has at most one

(µ− 1)-flat in common, which implies F1 and F2 have
at most p(µ−1)s points in common. In a Euclidean ge-
ometry EG(m, ps), there are

fEG(µ) = p(m−µ)s
µ∏

i=1

p(m−i+1)s − 1
p(µ−i+1)s − 1

(4)

µ-flats in total.
Denoting a m-dimensional projective geometry

over a Galois field GF(ps) by PG(m, ps), PG(m, ps)
contains (p(m+1)s − 1)/(ps − 1) points. In a projective
geometry PG(m, ps), there are

fPG(µ) =
µ∏

i=0

p(m−i+1)s − 1
p(µ−i+1)s − 1

(5)

µ-flats in total. Any pair of two µ-flats, (F1, F2), has at
most one (µ−1)-flat in common, which implies F1 and
F2 have at most (pµs − 1)/(ps − 1) points in common.

For simplicity, we use the notation FG(m, ps) to
express either the Euclidean geometry EG(m, ps) or the
projective geometry PG(m, ps). In a similar manner,
fFG(µ) expresses either fEG(µ) or fPG(µ).
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Letting N0 = fFG(0), suppose an N0 × fFG(µ) ma-
trix Bµ = (bij). An element bij in a matrix Bµ takes
bij = 1 if the points i is contained in the µ-flat j, or
takes bij = 0 otherwise. This matrix Bµ is referred
to as the incident matrix of µ-flats over points in
FG(m, ps).

For µ ≥ 1, let Bµ be the incident matrix of µ-flats
over points in a finite geometry FG(m, ps), and we de-
note its j-th column vector by bj . Allocating bj to the
j-th user’s fingerprint, the obtained code Bµ = {bj} is
called the µ-th order FG-AC code. In particular,
the AC code Bµ constructed from the Euclid geometry
and the projective geometry are called the µ-th order
EG-AC code and the µ-th order PG-AC code, re-
spectively.
Lemma 2 For some EG(m, ps), the µ-th order EG-
AC code Bµ is a (ps − 1)-resilient AC code. For some
PG(m, ps), the µ-th order PG-AC code Bµ is a ps-
resilient AC code. !

3.3. Special Class of AC Codes Based on Quasi-
Cyclic LDPC Matrices

A quasi-cyclic low-density parity check (QC-LDPC)
matrix without cycles of length four [4] can be used for
constructing other types of !-resilient AC codes [12].

Let α be a primitive element over a Galois field
GF(pms) and we denote the zero element over this field
by 0 = α−∞. Then any non-zero element can be ex-
pressed as αi for i = 0, 1, . . . , pms− 2. For any element
αi, let zi = (zi,−∞, zi,0, zi,1, . . . , zi,pms−2) be a pms-
tuple over GF(2) such that it takes zi,j = 1 if i = j,
and zi,j = 0 otherwise. The vector zi is called the loca-
tion vector of αi. Arrange pms cyclic-shifted versions
of the location vector zi to form a pms × pms circulant
matrix, where the first row is zi itself and the j-th row
is the right-shifted version of zi by j − 1 times. We
denote this matrix of αi by πi(I), where I corresponds
to the pms × pmscirculant matrix of 0 = α−∞ (i.e., the
identity matrix) and π expresses the cyclic permuta-
tion.

For two integers γ ≥ 1 and ρ ≥ 1, a regular QC-
LDPC matrix defined over a Galois field GF(pms) is
given by

M0 =





πa1,1(I) πa1,2(I) · · · πa1,ρ(I)
πa2,1(I) πa2,2(I) · · · πa2,ρ(I)

...
...

. . .
...

πaγ,1(I) πaγ,2(I) · · · πaγ,ρ(I)



 , (6)

where πai,j (I) for i = 1, 2, . . . , γ and j = 1, 2, . . . , ρ is a
pms×pmscirculant matrix of αai,j . Thus the size of M0

is γpms × ρpms. If any pair of two columns of the ma-
trix M0 has at most one 1-component in common, M0

is called a regular (γ, ρ) QC-LDPC matrix. The
QC-LDPC matrices are used for constructing error-
correcting codes [4] and there have been proposed many
types of QC-LDPC matrices.

For a Euclidean geometry EG(m, ps), let Bµ be
a pms × fEG(µ) incident matrix of the µ-flats over
points. We substitute the (i, j)-th circulant matrix
πai,j (I) (i = 1, 2, . . . , γ, j = 1, 2, . . . , ρ) of M0 with a
matrix πai,j (Bµ), which can be obtained to right-shift
the matrix Bµ ai,j times. We denote the resultant
γpms × ρfEG(µ) matrix by Mµ. Let Mµ be an AC
code whose codewords are column vectors of Mµ, and
we have the following lemma.

Lemma 3 The AC codeMµ for a given EG(m, ps) has
(i) the code length γpms, (ii) the number of codewords
ρfEG(µ) and (iii) the resilience ! = min{γ−1, ps−1}
for γ ≥ 2 and ! = ps−1 for γ = 1. !

When we use a projective geometry PG(m, ps) to
construct an !-resilient AC code, we have a similar re-
sult.
Lemma 4 Assume that we allocate each column vec-
tor of the incident matrix of µ-flats over points in
PG(m, ps) to a user’s codeword. This AC code has (i)
the code length γ(p(m+1)s−1)/(ps−1), (ii) the number
of codewords ρfPG(µ), and (iii) the resilience

! =
{

γ − 1, if γ − 1 < (p(µ+1)s − 1)/(pµs − 1),
ps, otherwies

for γ ≥ 2 and ! = ps for γ = 1. !

When γ = 1 and ρ = 1, the code Mµ is equiv-
alent to the µ-th order FG-AC code Bµ for a given
FG(m, ps). In general, as the dimension m of a geome-
try increases, the effectiveness of an AC code becomes
higher, however in this case the code length grows ex-
ponentially. Since a large code length leads to a signifi-
cant distortion to the original digital content, the code
length should be remained short.

4. Shortening Methods for AC Codes

4.1. Basic Idea

The length of !-resilient AC codes in [8], [12] might
become larger. In this section, we propose shortening
methods for these AC codes, while their resilience and
the number of codewords are maintained.

We will first illustrate the basic idea of proposed
shortening methods. Consider a code matrix given by

B =





1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1





. (7)

From Lemma 1, since the each column has Hamming
weight three and t = 1, this matrix gives a 2-resilient
AC code.
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We can choose any one row, say the bottom row.
Even though the chosen row is removed from the ma-
trix, it can be easily verified that the remaining ma-
trix still gives a 2-resilient AC code. This matrix has
two types of columns; the columns with the Hamming
weight three and those with the Hamming weight two.
Moreover, any pair of two column vectors with the
Hamming weight two has no 1-components in common.
If we further remove one additional row, the remaining
matrix is unable to give a 2-resilient AC code. Thus
removing one bit of any !-resilient code AC with a con-
stant Hamming weight and t = 1 keeps its resilience
while reducing the code length. As for cases with gen-
eral t ≥ 1, we have the following result:

Proposition 1 Assume that a binary matrix B̃ has
column vectors with the Hamming weight at most k
and for each column vector with the Hamming weight
k − δ with δ = 0, 1, . . . , t, other column vectors with
the Hamming weight at most k−δ have at most (t−δ)
1-components in common. Then the matrix B̃ gives a
(&k/t' − 1)-resilient AC code.
(Proof ) We denote the position sets in which the j-

th column vector has 1-components by Aj . Suppose a
set of colluders Sc whose size satisfies |Sc| ≤ &k/t' − 1.
As in Remark 1, if

⋂
j∈Sc

Aj )=
⋂

i∈I Ai for arbitrary
subset I ⊆ Γ whose size is less than or equal to &k/t'−
1, Sc is uniquely identified. Furthermore, from the De
Morgan’s low, this is equivalent to

⋃

j∈Sc

Aj )=
⋃

i∈I
Ai, ∀I, s.t. |I| ≤ &k/t'−1. (8)

Thus it suffices to show that eq. (8) holds.
We suppose temporarily that a set I )= Sc with size

&k/t' − 1 satisfies
⋃

j∈Sc
Aj =

⋃
i∈I Ai.

(i) The case there exists some jo ∈ Sc \ (Sc ∩ I)
with |Aj | = k:

From the assumption of the proposition, for some
Ajo , jo ∈ Sc \ (Sc ∩ I), any Ai, i ∈ I, has at
most t elements in common with Ajo . Therefore
it requires |I| > &k/t' − 1 to satisfy

⋃
j∈Sc

Aj =⋃
i∈I Ai from the assumption |Ajo | ≥ k. Otherwise,

Ajo )⊆
⋃

i∈I Ai. Thus it contradicts the assumption
|I| ≤ &k/t' − 1, and eq. (8) holds.

(ii) The case there exists some io ∈ I \ (Sc ∩ I)
with |Aj | = k:

A similar argument to the case (i) holds for this
case and eq. (8) holds.

(iii) The case there does not exist j ∈ Sc∪I\(Sc∩
I) with |Aj | = k:

We denote the maximum Hamming weight of code-
words in Sc \ (Sc ∩ I) by k − δ∗ for some δ∗ =
1, 2, . . . , t − 1. From the assumption of the propo-
sition, any Aj∗ with |Aj∗ | = k − δ∗ and Ai, i ∈
I \ (Sc∩I), have at most t−δ∗ elements in common.
Therefore it requires |I| > &(k − δ∗)/(t − δ∗)' − 1

to satisfy
⋃

j∈Sc
Aj =

⋃
i∈I Ai from the assumption

|Aj∗ | = k − δ∗. Otherwise, Aj∗ )⊆
⋃

i∈I Ai. Note
that &(k − δ)/(t − δ)' > &k/t' for δ = 1, 2, . . . , t − 1
since

k − δ

t− δ
− k

t
=

δ(k − t)
t(t− δ)

> 0. (9)

Thus it contradicts the assumption |I| ≤ &k/t' − 1,
and eq. (8) holds. !

We may obtain a code matrix B̃ which satisfies the
assumption of Proposition 1 by removing t rows from
a matrix B with the Hamming weight k. Therefore
we require a structured method for constructing such
shortened AC codes.

4.2. Structured Shortening Method of AC
Codes Based on Finite Geometries

We can shorten the µ-th order FG-AC codes ex-
plained in Sect. 3.2.

Consider an incident matrix Bµ of µ-flats over
points in a finite geometry FG(m, ps). Choose a (µ−1)-
flat from FG(m, ps) and eliminate rows which corre-
spond to all points contained in this (µ − 1)-flat from
Bµ. We denote the resultant matrix by B̃µ,µ−1. We de-
note an AC code whose codewords are column vectors
of the matrix B̃µ,µ−1 by B̃µ,µ−1.

Theorem 1 The code B̃µ,µ−1 for a given EG(m, ps) is
a (ps−1)-resilient AC code with (i) the code length Ñ =
pms−p(µ−1)s, (ii) the number of codewords fEG(µ), and
(iii) the resilience (ps − 1).
(Proof ) As explained in Sect. 3.2, any pair of two

µ-flats (say F1 and F2) in an Euclidean geometry
EG(m, ps) has a hyperplane with a smaller dimension
in common. We denote a flat of the maximum dimen-
sion contained in F1 and F2 by F ′, then no other points
are contained in both of them.

After a (µ − 1)-flat F ′ is eliminated from this ge-
ometry, points contained in a µ-flat are changed de-
pending on how many points this µ-flat and F ′ have
in common. If this µ-flat and F ′ have no points in
common, the number of points in this µ-flat is un-
changed. If a µ-flat and F ′ have a ν-flat in common
where ν = 0, 1, . . . , µ− 1, the number of points in this
µ-flat is changed from pµs to pµs − pνs. We call this
flat the (µ, ν)-flat over an Euclidean geometry.

From the properties of Euclidean geometries, a
(µ, ν)-flat and a (µ, ν′)-flat for ν′ = ν, ν + 1, . . . , µ − 1
have at most p(µ−1)s − pνs points in common. There-
fore the code matrix B̃µ,µ−1 satisfies the condition
of Proposition 1 with k = pµs, t = p(µ−1)s, and
δ = 0, 1, ps, . . . , p(µ−1)s. Thus the theorem is proven.

!

Theorem 1 indicates that we can shorten any µ-th
order EG-AC code by p(µ−1)s bits while keeping the
number of codewords and the resilience.
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Similar to the case using Euclidean geometries
EG(m, ps), we can shorten the µ-th order PG-AC
codes.

Theorem 2 The code B̃µ,µ−1 for a given PG(m, ps) is
an AC code with (i) the code length

Ñ =
p(m+1)s − pµs

ps − 1
, (10)

(ii) the number of codewords fPG(µ), and (iii) the re-
silience ps.
(Proof ) Similar to an Euclidean geometry, any pair

of two µ-flats (say F1 and F2) in a projective geometry
PG(m, ps) has a hyperplane with a smaller dimension
in common. We denote a flat of the maximum dimen-
sion contained in F1 and F2 by F ′.

After a (µ−1)-flat F ′ is eliminated from this geome-
try, points contained in a µ-flat are changed depending
on how many points this µ-flat and F ′ have in common.
If a µ-flat and F ′ have no points in common, the num-
ber of points in this µ-flat is unchanged. If a µ-flat and
F ′ have a ν-flat in common where ν = 0, 1, . . . , µ − 1,
the number of points in this µ-flat is changed from
(p(µ+1)s − 1)/(ps − 1) to

p(µ+1)s − 1
ps − 1

− p(ν+1)s − 1
ps − 1

=
p(µ+1)s − p(ν+1)s

ps − 1
. (11)

We call this flat the (µ, ν)-flat over a projective geom-
etry.

From the properties of projective geometries, a
(µ, ν)-flat and a (µ, ν′)-flat for ν′ = ν, ν + 1, . . . , µ − 1
have at most (pµs − pνs)/(ps − 1) points in common.
Therefore the code matrix B̃µ,µ−1 satisfies the condi-
tion of Proposition 1 with k = (p(µ+1)s − 1)/(ps − 1),
t = (pµs − 1)/(ps − 1), and δ = 0, 1, (p2s − 1)/(ps −
1), . . . , (pµs − 1)/(ps − 1). Thus the theorem is proven.

!

4.3. Structured Shortening Method of AC
Codes Based on QC-LDPC Matrices

We can shorten AC codes based on QC-LDPC ma-
trices in Sect. 3.3.

Consider a code matrix Mµ which is obtained from
a (γ, ρ) QC-LDPC matrix and the incident matrix of µ-
flats over points in a finite geometry FG(m, ps). For i =
1, 2, . . . , γ and j = 1, 2, . . . , ρ, the (i, j)-th sub-block of
the matrix Mµ is expressed as πai,j (Bµ). We denote a
matrix obtained by eliminating rows which correspond
to points contained in a (µ−1)-flat from πai,j (Bµ) by
πai,j (B̃µ,µ−1) for i = 1, 2, . . . , γ and j = 1, 2, . . . , ρ.
We denote the over-all code matrix by M̃µ,µ−1 and the
AC code whose codewords are all column vectors of
the matrix M̃µ,µ−1 by M̃µ,µ−1. We then obtain the
following result.

Table 1: Examples of Original and Shortened EG-AC
Codes Based on (γ, ρ) QC-LDPC Matrices

γ ρ (m, ps) µ N Ñ log2 ρfEG(µ)

3 26 (3, 31) 1 81 78 11.57
3 80 (4, 31) 2 243 234 16.51
3 242 (5, 31) 2 729 720 22.92
4 63 (3, 22) 1 256 252 14.37
4 255 (4, 22) 2 1024 1008 20.47
4 1023 (5, 22) 2 4096 4080 28.49
5 124 (3, 51) 1 625 620 16.55
5 624 (4, 51) 2 3125 3100 23.58

Theorem 3 The code M̃µ,µ−1 for a given (γ, ρ) QC-
LDPC matrix and EG(m, ps) is an AC code with (i) the
code length Ñ = γ(pms − p(µ−1)s), (ii) the number of
codewords ρfEG(µ), and (iii) the resilience ! = min{γ−
1, ps − 1} for γ ≥ 2 and ! = ps − 1 for γ = 1.

(Proof ) Since πai,j (B̃µ,µ−1) for i = 1, 2, . . . , γ and
j = 1, 2, . . . , ρ consists of pms − p(µ−1)s rows, the code
length is easily verified. Since B̃µ,µ−1 is a (ps− 1)-
resilient AC code from Theorem 1, the resilience of
M̃µ,µ−1 is not altered from Mµ. !

Theorem 4 The code M̃µ,µ−1 for a given (γ, ρ) QC-
LDPC matrix and PG(m, ps) is an AC code with (i)
the code length

Ñ =
γ(p(m+1)s − pµs)

ps − 1
, (12)

(ii) the number of codewords ρfPG(µ), and (iii) the
resilience

! =
{

γ − 1, if γ − 1 < (p(µ+1)s − 1)/(pµs − 1),
ps, otherwies,

for γ ≥ 2 and ! = ps for γ = 1.

(Proof ) The theorem can be proven in a similar way
to the proof of Theorem 3. !

Example 1 We show some example of original and
shortened AC codes. Tables 1 and 2 show the EG-AC
codes and PG-AC codes, respectively, obtained from
(γ, ρ) QC-LDPC matrices. We assume the QC-LDPC
matrices are constructed by the method of [2]. In Ta-
bles, N and Ñ indicate the code lengths of original
codes and shortened codes, respectively. The columns
“log2 ρfEG(µ)” and “log2 ρfPG(µ)” express the loga-
rithms of the number of codewords, i.e., the number
of information symbols. The effectiveness of the short-
ened codes becomes high as the dimension m of the
finite geometry FG(m, p2) increases. !
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Table 2: Examples of Original and Shortened PG-AC
Codes Based on (γ, ρ) QC-LDPC Matrices

γ ρ (m, ps) µ N Ñ log2 ρfPG(µ)

3 26 (3, 31) 1 120 117 11.72
3 80 (4, 31) 2 363 351 16.56
3 242 (5, 31) 2 1092 1080 22.97
4 63 (3, 22) 1 340 336 14.46
4 255 (4, 22) 2 1364 1344 20.50
4 1023 (5, 22) 2 5460 5440 28.52
5 124 (3, 51) 1 780 775 16.61
5 624 (4, 51) 2 3905 3875 23.85

4.4. Comparison with Distortions between
Conventional and Shortened AC Codes

In this subsection, we will compare distortion to the
original content given by the conventional AC codes
and the shortened AC codes.

We denote the code lengths of original AC codes
and shortened AC codes by N and Ñ , respectively.
The distortion of the digital content for the users can
be measured with E[||yj − x||2], where E[·] and || · ||2
denote the expectation by {bj} and the square of norm,
respectively [12].

It follows from yj = x + wj and eq. (1) that the
distortion of an original AC code to a content can be
calculated as

E
[
||yj−x||2

]
=

N∑

i=1

E
[
||(2bij−1)ui||2

]
=

N∑

i=1

||ui||2 = N.

where the first equality is obtained by the linearity of
the expectation. Similarly, the distortion of a shortened
AC code to a content can be calculated as

E
[
||yj − x||2

]
=

Ñ∑

i=1

E
[
||(2bij − 1)ui||2

]
= Ñ .

Therefore the distortion to an original content given
by the shortened AC codes of Proposition 1 (and hence,
Theorems 1–4) is reduced compared with that of orig-
inal AC codes. As the number of shortened symbols
becomes large, the effectiveness of the shortening be-
comes greater.

5. Conclusion and Future Improvements

In this paper, for a class of AC codes devised by
Trappe et al. and Yagi et al., novel methods for short-
ening the code length were proposed, while their num-
ber of codewords and the resilience are maintained. We
proposed structured methods for shortening AC codes
by using properties of finite geometries. The shortened
AC codes can have the shorter codewords than original
AC codes. Due to a smaller code length, the distor-
tion provided by AC codes to an original content can

be reduced and the coding rate becomes high. The ef-
fectiveness of the shortened codes becomes high as the
dimension m of a finite geometry FG(m, p2) increases.

In this paper, the resilience is guaranteed by assum-
ing that there occur no additive noises. Therefore, the
performance of the AC codes should be analyzed by
assuming additive noises.
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