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Abstract— Digital fingerprinting, a copyright protection tech-
nique for digital contents, is considered. Digital fingerprinting
should deter collusion attacks, where several fingerprinted
copies of the same content are mixed to disturb their fin-
gerprints. In this paper, we consider the averaging attack,
which has effect for multimedia fingerprinting. We propose new
collusion-secure fingerprinting codes based on finite geometries
(FGs) which increase the rate of conventional collusion-secure
codes, while they guarantee to identify the same number of
colluders. Due to the new FG-based fingerprinting codes, the
system can deal with a larger number of users to distribute a
digital content.

I. INTRODUCTION

With the high advances of information technologies, a
large amount of digital contents can be processed by comput-
ers and devising techniques for copyright protection of digital
contents has been an important problem to be solved. As one
of the most prominent solutions, digital fingerprinting has
attracted a great deal of attention. The digital fingerprinting
embeds a user’s ID called a fingerprint into an original
content with a watermarking technique and the fingerprinted
contents are distributed to users.

Digital fingerprinting requires robustness against collusion
attacks, where more than one illicit user collude to take
illegal actions to the distributed contents. One of well-known
collusion attacks are the interleaving attack [1], [4], [8], [9]
and the averaging attack [4], [11], [12], [13]. W. Trappe et
al. have devised collusion-secure codes against the averaging
attack based on balanced incomplete block design (BIBD)
[11]. The collusion-secure codes devised by Trappe et al.
is called BIBD-based anti-collusion (AC) codes and it has
been reported that these codes have robustness against the
averaging attack [12].

In this study we propose, based on finite geometries,
methods for improving BIBD-based AC codes devised by
Trappe et al. or Yang et al. [15] by increasing its coding rate
while their resilience is maintained. Consequently, we can
realize content distribution system which provides services
for greater number of users.

II. FINGERPRINTING MODEL

A. Digital Fingerprinting

When distributing a digital content to users, a codeword
corresponding to each user is embedded into an original con-
tent by a watermarking technique. The codeword allocated
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for each user is called the user’s fingerprint. Some illicit
users may collude and attempt to disturb their fingerprints
so that their fingerprints are not revealed from an illegally
utilized content. This action is called a collusion attack. The
detector of colluders estimates colluders’ fingerprints from
the disturbed fingerprint.

Let Γ = {1, 2, . . . , |Γ|} be a set of users of a digital
content and we denote a codeword to the user j ∈ Γ by
bj = (bj1, bj2, . . . , bjN )T ∈ {0, 1}N , where T denotes the
transposition. The fingerprint watermark wj is created by
using N orthogonal bases {ui ∈ RN | i = 1, 2, . . . , N} with
equal energy and a codeword bj as

wj =
N∑

i=1

(2bij − 1)ui. (1)

Next, regarding the distributed content to users as the host
signal, the created watermark signal is embedded into it.
Denoting the host signal by a vector x ∈ RN , the distributed
content to the user j ∈ Γ is1 yj = x + wj .

Since the fingerprint is embedded by using a watermarking
technique, any users cannot detect their own fingerprint wj

from the watermarked content yj . Therefore illicit users may
collude to disturb their fingerprints by creating an illegal
content from their distributed contents.

B. Assumed Collusion Attack

We consider a set of colluders with the size h ≥ 1, denoted
by Sc ⊆ Γ, and without loss of generality, we assume Sc =
{1, 2, . . . , h}. The attacked host signal by a set of colluders
Sc is expressed as

y =
1
h

h∑
j=1

yj = x +
1
h

h∑
j=1

N∑
i=1

(2bij − 1)ui. (2)

The detector of the colluders estimates the set of colluders Sc

from the attacked host signal y ∈ RN . This attack is called
the averaging attack, which is one of well-known collusion
attacks2 [4], [11], [12], [13].

1In this paper, for simplicity, the fingerprinted content is defined in this
manner. More precisely, each wj is multiplied by some value called Just-
Difference Noticeable (JDN) coefficient [7], before it is added to the host
signal.

2For simplicity, although we only state the case of the averaging attack,
the argument here can hold for the logical OR attack [15]. The AC codes
devised by J. Yang et al. [15] are also based on BIBD, and the proposed
method in this paper can also improve their performance.
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III. ANTI-COLLUSION CODES AGAINST AVERAGING

ATTACK

A. BIBD-based AC Codes

Trappe et al. have proposed BIBD-based anti-collusion
(AC) codes [11]. First, we introduce the definition of the
AC codes.

Definition 1: Assume that the host signal x is known to
the detector. If the size of a set of colluders Sc satisfies
|Sc| ≤ � for some positive constant �, the code which can
reveal all the colluders in Sc is referred to as an �-resilient
AC code. The parameter � is called the resilience of the AC
codes. �

Trappe et al. have constructed AC codes whose codewords
have a constant Hamming weight k and whose two distinct
codewords have at most one “1-entry” in common based on
BIBD. It has been shown that this code becomes a (k − 1)-
resilient AC code.

Consider a set X of v elements and call a set of k elements
block. If any pairs of two distinct elements are contained in
exactly λ blocks, the system of the elements and the blocks is
called a (v, k, λ) balanced incomplete block design (BIBD).
For a j-th block, let bj = (b1j , b2j , . . . , bvj)T of the length
v take 1-entry in the i-th position if this block contains the
i-th element in X , and 0-entry otherwise. We call a matrix
B1 = [bij ] whose columns are composed of these vectors
of all blocks the incident matrix of the BIBD. Trappe et al.
have proposed an AC code whose codewords are columns of
the incident matrix of an (N, k, 1) BIBD [11]. The resilience
of this AC code can be guaranteed by the following lemma.

Lemma 1 ([11]): Letting B1 = [bij ] be the incident ma-
trix of an (N, k, 1) BIBD, we denote the j-th column of B1

by bj and its Hamming weight by wH(bj) = k for some
k > 2. If bj is the j-th user’s fingerprint, a set of column
vectors, denoted by B1 = {bj}, becomes a (k − 1)-resilient
AC code. i.e., if |Sc| ≤ k − 1, any set of colluders Sc can
be uniquely detected. �

We here consider a mechanism for detecting a set of
colluders by using a (k − 1)-resilient AC code.

Remark 1: Let Q(Sc) be a set of symbol positions where
any fingerprints in Sc equally take 0-entry. A (k−1)-resilient
AC code uniquely determines the set Q(Sc) for any Sc with
|Sc| ≤ k − 1. �

In order to explain the principle of the detecting method,
we use an example for simplicity. Let k = 3 and Sc = {i, j}
whose fingerprints are given by bi = (1, 1, 0, 1, 0, 0, 0), bj =
(1, 0, 1, 0, 0, 1, 0). Then from eq. (1),

wi = u1 + u2 − u3 + u4 − u5 − u6 − u7 (3)

wj = u1 − u2 + u3 − u4 − u5 + u6 − u7. (4)

As a result of collusion, an illegal content y is produced.
The detected sequence y − x = (wi + wj)/2 has a
coefficient vector3(1, 0, 0, 0,−1, 0,−1), whose position set
of the (−1)-entry, {5, 7}, corresponds to the position set
Q(Sc), which expresses positions of 0-entry in the both bi

and bj . From Remark 1, since a (k − 1)-resilient AC code

uniquely identifies Q(Sc) for any Sc of the size less than k,
the set of positions of (−1)-entry reveals that the user i and
j take participate in the collusion. Even for a general case,
any (k − 1)-resilient AC code can identify colluders [11],
[12].

B. Class of AC Codes Based on Finite Geometries

A subclass of BIBD-based AC codes by Trappe et al.
can be algebraically constructed by using finite geometries.
In this paper, we focus on this subclass of the Trappe’s �-
resilient AC codes based on finite geometries. We briefly
describe two kinds of finite geometries. Refer to [5], [10]
for detail.

For a prime p and two positive integers m and s (m ≥
2, s ≥ 1), a m-dimensional Euclidean geometry EG(m, ps)
over a Galois field GF(ps) consists of points, lines, and hy-
perplanes. Any points in EG(m, ps) are pms m-dimensional
vectors over GF(ps), and they form an m-dimensional vector
space V over GF(ps). For µ such that 0 ≤ µ ≤ m, since a
µ-dimensional hyperplane (generally, called a µ-flat) is a µ-
dimensional subspace of V and its cosets, any µ-flat contains
pµs points. Points and lines correspond to 0-flats and 1-flats,
respectively.

For a given µ < m, let a0,a1, . . . ,aµ be µ + 1 linear
independent points in EG(m, ps). Then using µ elements
β1, β2, . . . , βµ of GF(ps), pµs points given by

a0 + β1a1 + β2a2 + · · · + βµaµ (5)

forms a µ-flat.
Any pair of two µ-flats, (F1, F2), has at most one

(µ − 1)-flat in common, which implies F1 and F2 have at
most p(µ−1)s points in common. In a Euclidean geometry
EG(m, ps), there are

fEG(µ) = p(m−µ)s

µ∏
i=1

p(m−i+1)s − 1
p(µ−i+1)s − 1

(6)

µ-flats in total.
Denoting a m-dimensional projective geometry over a

Galois field GF(ps) by PG(m, ps), PG(m, ps) contains
(p(m+1)s − 1)/(ps − 1) points. In a projective geometry
PG(m, ps), there are

fPG(µ) =
µ∏

i=0

p(m−i+1)s − 1
p(µ−i+1)s − 1

(7)

µ-flats in total. Any pair of two µ-flats, (F1, F2), has at most
one (µ− 1)-flat in common, which implies F1 and F2 have
at most (pµs − 1)/(ps − 1) points in common.

For simplicity, we use the notation FG(m, ps) to express
either the Euclidean geometry EG(m, ps) or the projective
geometry PG(m, ps). In a similar manner, fFG(µ) expresses
either fEG(µ) or fPG(µ).

Letting N0 = fFG(0), suppose an N0 × fFG(µ) matrix
Bµ = [bij ]. We allocate the rows and columns of Bµ to
points and µ-flats in FG(m, ps), respectively. An entry bij

3The coefficient vector can be obtained by calculating the inner product
with orthogonal bases {ui}.
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in a matrix Bµ takes bij = 1 if the points i is contained in
the µ-flat j, or takes bij = 0 otherwise. This matrix Bµ is
referred to as the incident matrix of µ-flats over points in
FG(m, ps).

As mentioned in Sect. III-B, Trappe et al. arrange each
column vector of the incident matrix B1 of 1-flats (lines)
over points in FG(m, ps) as a codeword of an AC code.
They utilize the two properties: (i) any 1-flat in FG(m, ps)
has a constant number of points, (ii) any pair of two 1-flats
has at most one point in common. Any AC code constructed
from EG(m, ps) becomes a (ps − 1)-resilient AC code. By
using PG(m, ps) to construct an AC code, this code becomes
a ps-resilient AC code.

We mention parameters of the AC code B1. The code
length of B1 is N0, which equals to the number of points
in FG(m, ps). The number of codewords (the number of
accommodated users) is fFG(1), which expresses the number
of 1-flats in FG(m, ps). Thus the coding rate r1 is given by
r1 = log2 fFG(1)/N0. With the constant resilience and code
length, as the number of codewords increases, the system
can provide services to more users.

IV. RELAXATION OF CONDITIONS ON AC CODES

In this section, we relax the conditions of the BIBD-based
AC codes [11], [12], which provides flexible construction of
the AC codes4.

A. Relaxation for General AC Codes Based on BIBD

For a real number v, we express �v� as the minimum
integer not less than v.

Lemma 2: Assume a binary matrix satisfies: (i) the Ham-
ming weight of each column is at least k, and (ii) any pair
of distinct two column vectors has at most t 1-entries in
common. Then, the AC code obtained from this matrix is a
(�k/t� − 1)-resilient AC code.

(Proof ) The proof is an extension of that in [11] for the case
t ≥ 1.

We denote the position sets in which the j-th column
vector has 1-entries by Aj . Suppose a set of colluders Sc

whose size satisfies |Sc| ≤ �k/t� − 1. As in Remark 1, if⋂
j∈Sc

Aj �= ⋂
i∈I Ai for arbitrary subset I ⊆ Γ whose size

is less than or equal to �k/t� − 1, Sc is uniquely identified.
Furthermore, from De Morgan’s low, this is equivalent to⋃

j∈Sc

Aj �=
⋃
i∈I

Ai, ∀I, s.t. |I| ≤ �k/t� − 1. (8)

Thus it suffices to show eq. (8).
We suppose temporarily that a set I �= Sc with size

|I| ≤ �k/t� − 1 satisfies
⋃

j∈Sc
Aj =

⋃
i∈I Ai. From

the assumption of the lemma, if Sc ∩ I = ∅ for some
Ajo , jo ∈ Sc (if Sc∩I �= ∅ for some Ajo , jo ∈ Sc\(Sc∩I)),
any Ai, i ∈ I, has at most t elements in common with Ajo .
Therefore it requires |I| ≥ �k/t� to satisfy Ajo ⊆ ⋃

i∈I Ai

from the assumption |Ajo | ≥ k. Thus it contradicts the
assumption |I| ≤ �k/t� − 1, and eq. (8) holds. �

4This extension is not limited to the AC codes using finite geometries
but can apply to any AC codes proposed by Trappe et al.

The AC codes assumed in Lemma 2 are reduced to the
AC codes of Trappe et al. if their codewords have a constant
Hamming weight k and t = 1. Therefore this extension
provides flexibility to construct �-resilient AC codes.

B. Distortion Given by the AC Codes with Relaxed Condition

In this subsection, we mention distortion to the original
content given by the AC codes with the relaxation of the
conditions.

The distortion of the digital content for the users can be
measured with E[||yj − x||2], where E[·] and || · ||2 denote
the expectation by {bj} and the square of norm, respectively.
It follows from yj = x + wj and eq. (1) that the distortion
to the contents can be calculated as

E
[
||yj − x||2

]
=

N∑
i=1

E
[
||(2bij − 1)ui||2

]
=

N∑
i=1

||ui||2,

where the first equality is obtained by the linearity of the
expectation. It can be seen that the distortion takes a constant
value

∑N
i=1 ||ui||2 regardless of the probability of symbols

of {bj}.
Therefore the distortion to the original content given by

the AC codes of Lemma 2 is equal to that of Trappe et
al. even if the Hamming weight of the codewords becomes
greater.

V. IMPROVEMENT OF AC CODES USING FINITE

GEOMETRIES

We propose code construction for increasing the coding
rate of the conventional AC codes with keeping resilience.

A. AC Codes Based on Finite Geometries

In this subsection, we describe an explicit code construc-
tion in Lemma 2 by using finite geometries.

When we construct the �-resilient AC codes of Trappe et
al. by using finite geometries FG(m, ps), relationship be-
tween points and lines (1-flats) in FG(m, ps) is considered.
In the new code construction, relationship between points
and µ-flats (µ ≥ 1) in FG(m, ps) will be utilized.

Definition 2: For µ ≥ 1, let Bµ be the incident matrix
of µ-flats over points in a finite geometry FG(m, ps), and
we denote its j-th column vector by bj . Allocating bj to
the j-th user’s fingerprint, the obtained code Bµ = {bj} is
called the µ-th order FG-AC code. In particular, the AC code
Bµ constructed from the Euclid geometry and the projective
geometry are called the µ-th order EG-AC code and the µ-th
order PG-AC code, respectively. �

We then have the following theorem.

Theorem 1: For some EG(m, ps), the µ-th order EG-AC
code Bµ is a (ps−1)-resilient AC code. For some PG(m, ps),
the µ-th order PG-AC code Bµ is a ps-resilient AC code.

(Proof ) As explained in Sect. III-B, any pair of two µ-flats,
F1 and F2, in FG(m, ps) has at most one (µ − 1)-flat in
common. Therefore it can be found that k = pµs, t = p(µ−1)s

for EG-AC codes and k = (p(µ+1)s−1)/(ps−1), t = (pµs−
1)/(ps−1) for PG-AC codes. From Lemma 2, the claim can
be proven. �
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From Theorem 1, it can be found that the resilience of a
µ-th order FG-AC code Bµ is independent of the order µ of
the flats.

We here mention parameters of the µ-th order FG-AC
codes. For a given FG(m, ps), we can have m − 1 µ-th
order FG-AC codes Bµ for µ = 1, 2, . . . ,m − 1 with the
same resilience. From the properties of the incident matrix
of µ-flats over points, the code lengths of these FG-AC
codes Bµ are equally N0 and the numbers of codewords
are fFG(µ). The coding rate, denoted by rµ, is given by
rµ = log2 fFG(µ)/N0. i.e., parameter of Bµ depending
on the order µ is only the number of codewords, which
determines the best FG-AC code Bµ∗ with the maximal size
for a given FG(m, ps). Therefore we call such order µ∗ the
maximal order of the FG-AC codes for a given FG(m, ps).

Thus we have the following theorem.

Theorem 2: The maximal order µ∗ of the FG-AC codes
for a given FG(m, ps) satisfies:
• the case m ≤ 3: µ∗ = 1;
• the case m = 4: µ∗ = 2 or µ∗ = 1, 2;
• the case m > 4: µ∗ ≥ 2.

(Proof ) It can be easily verified from the definition since
the number of codewords of a µ-th order FG-AC code Bµ is
given by eq. (6) or eq. (7). If m = 3, the maximal order of
the EG-AC codes satisfies µ∗ = 2 while that of the PG-AC
codes is µ∗ = 1, 2. �

It follows from Theorem 2 that there always exists a better
FG-AC code than AC codes B1 of Trappe et al. when m > 3.

B. Examples of FG-AC Codes with the Maximal Order

For a given EG(m, ps), we show examples of EG-AC
codes Bµ∗ with the maximal order in Table I. For m > 3,
we display codes with the resilience (ps − 1) greater than
one in the increasing order of their length. In the table, the
columns of “log2 fEG(1)” and “log2 fEG(µ∗)” express the
logarithm of the number of codewords of B1 (the Trappe’s
AC code) and that of the EG-AC code Bµ∗ with the maximal
order.

It follows from the property of the function fEG(µ) that
the number of codewords of Bµ∗ becomes larger than that of
B1 as the dimension m of EG(m, ps) increases. In particular,
the number of codewords of Bµ∗ is 22 times larger than that
of Bµ∗ when m ≥ 5, 26.5 times larger for EG(7, 3), and 210

times larger for EG(8, 3).
We also show examples of PG-AC codes Bµ∗ with the

maximal order in Table II for a given PG(m, ps). Although
the PG-AC codes with the maximal order behave similar to
the EG-AC codes, there exist two maximal orders when m
is even.

VI. AC CODE BASED ON QUASI-CYCLIC LDPC MATRIX

Conventional (k − 1)-resilient AC codes by Trappe et al.
utilize the following property: (i) the Hamming weight of
each column weight is k, and (ii) any pair of two codewords
has at most one 1-entry in common. In other words, any code
with this property is a (k − 1)-resilient AC code. A regular

TABLE I

EXAMPLES OF THE EG-AC CODES WITH THE MAXIMAL ORDER

(m, ps) N0 µ∗ log2 fEG(1) log2 fEG(µ∗)

(4, 31) 81 2 10.08 10.19
(5, 31) 243 2 13.26 15.00
(4, 22) 256 2 12.41 12.48
(4, 51) 625 2 14.25 14.30
(6, 31) 729 3 16.43 19.80
(5, 22) 1024 2 16.41 18.50
(7, 31) 2187 3 19.60 26.16
(5, 51) 3125 2 18.90 21.28
(4, 23) 4096 2 18.19 18.21
(6, 22) 4096 3 20.41 24.52
(8, 31) 6561 4 22.77 32.52

TABLE II

EXAMPLES OF THE PG-AC CODES WITH THE MAXIMAL ORDER

(m, ps) N0 µ∗ log2 fPG(1) log2 fPG(µ∗)

(4, 31) 121 1, 2 10.24 10.24
(4, 22) 341 1, 2 12.50 12.50
(5, 31) 364 2 13.43 15.05
(4, 51) 781 1, 2 14.31 14.31
(6, 31) 1093 2, 3 16.60 19.82
(5, 22) 1365 2 16.51 18.52
(7, 31) 3280 3 19.77 26.18
(5, 51) 3906 2 18.96 21.29
(4, 23) 4681 1, 2 18.21 18.21
(6, 22) 5461 2, 3 20.51 24.53
(8, 31) 9841 3, 4 22.94 32.52

low-density parity check (LDPC) matrix without cycles of
length four [5] can be used for constructing a (k−1)-resilient
AC code. In this section, we show how to improve such AC
codes when we use LDPC matrices with quasi-cyclic (QC)
structure.

A. Quasi-Cyclic LDPC Matrix over Galois Field

Let α be a primitive element over a Galois field GF(pms)
and we denote the zero element over this field by 0 =
α−∞. Then any non-zero element can be expressed as αi

for i = 0, 1, . . . , pms − 2. For any element αi, let zi =
(zi,−∞, zi,0, zi,1, . . . , zi,pms−2) be a pms-tuple over GF(2)
such that it takes zi,j = 1 if i = j, and zi,j = 0 otherwise.
The vector zi is called the location vector of αi. Arrange
pms cyclic-shifted versions of the location vector zi to form a
pms×pms circulant matrix, where the first row is zi itself and
the j-th row is the right-shifted version of zi by j−1 times.
We denote this matrix of αi by πi(I), where I corresponds to
the pms×pmscirculant matrix of 0 = α−∞ (i.e., the identity
matrix) and π expresses the cyclic permutation.

For two integers γ ≥ 1 and ρ ≥ 1, A regular QC-LDPC
matrix defined over a Galois field GF(pms) is given by

M0 =




πa1,1(I) πa1,2(I) · · · πa1,ρ(I)
πa2,1(I) πa2,2(I) · · · πa2,ρ(I)

...
...

. . .
...

πaγ,1(I) πaγ,2(I) · · · πaγ,ρ(I)


 , (9)

where πai,j (I) for i = 1, 2, . . . , γ and j = 1, 2, . . . , ρ is a
pms × pmscirculant matrix of αai,j . Thus the size of M0 is
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γpms × ρpms. If any pair of two columns of the matrix M0

has at most one 1-entry in common, M0 is called a regular
(γ, ρ) QC-LDPC matrix.

The QC-LDPC matrices is used for constructing error-
correcting codes [5] and there have been proposed many
types of QC-LDPC matrices. QC-LDPC matrices based on
the structure of the Reed-Solomon code [2], [6] or based
on the structure of the Array codes [3], [14] are one of the
examples assumed in this paper.

Another QC-LDPC matrix defined over a Galois field
GF(pms) can be considered. This matrix consists of two
types of columns, namely the first type is of the Hamming
weight γ and the other is of the Hamming weight γ−1. Let
O and I ′ be the (pms − 1) × (pms − 1) all zero matrix and
the (pms − 1) × (pms − 1) identity matrix, respectively. We
substitute each submatrix πai,j (I) with O if ai,j = −∞ and
with πai,j (I ′) otherwise for i = 1, 2, . . . , γ, j = 1, 2, . . . , ρ.
The resultant matrix is of the size γ(pms − 1)× ρ(pms − 1).
We call this type of LDPC matrices partially regular ({γ, γ−
1}, ρ) QC-LDPC matrices.

B. Improvement of AC Codes Based on Regular Quasi-
Cyclic LDPC Matrix

Since a regular (γ, ρ) QC-LDPC matrix satisfies (i) each
column weight is γ, (ii) any pair of two columns has one
1-entry in common, any AC code whose codewords are
arranged from column vectors of M0 is a (γ−1)-resilient AC
code. We denote this AC code by M0 and call conventional
AC codes based on QC-LDPC matrices.

We here propose a method for increasing the number of
codewords while maintaining the code length, the resilience
by using a similar technique in Sect. V. For a Euclidian
geometry EG(m, ps), let Bµ be a pms × fEG(µ) incident
matrix of the µ-flats over points. We substitute the (i, j)-th
circulant matrix πai,j (I) (i = 1, 2, . . . , γ, j = 1, 2, . . . , ρ)
of M0 with a matrix πai,j (Bµ), which can be obtained to
right-shift the matrix Bµ ai,j times. We denote the resultant
γpms × ρfEG(µ) matrix by Mµ. Let Mµ be an AC code
whose codewords are column vectors of Mµ, and we have
the following theorem.

Theorem 3: The AC code Mµ for a given EG(m, ps)
has (i) the code length γpms, (ii) the number of codewords
ρfEG(µ) and (iii) the resilience � = min{γ−1, ps−1}.

(Proof ) Since both (i) the code length and (ii) the number
of codewords are easily verified, we here mention (iii), the
resilience.

We partition γpms rows of the matrix Mµ by pms rows
into γ groups, and we call the ν-th group (the (νpms +1)-th
row to (ν+1)pms-th row) the ν-th row section. By expressing
each column vector mj ∈ {0, 1}γpms

of Mµ with γ vectors
mj,ν ∈ {0, 1}pms

as mT
j = (mT

j,1,m
T
j,2, . . . ,m

T
j,γ), we

have wH(mj,ν) = pµs for ν = 1, 2, . . . , γ.
(i) the case of γ ≤ ps:

Consider a set of colluders, Sc of size |Sc| ≤ γ − 1.
Denoting the support of mj,ν (ν = 1, 2, . . . , γ) by Aj,ν ,
we suppose there exists a set of users, I of size |I| ≤ γ − 1

satisfying ⋃
j∈Sc

⋃
ν∈[1,γ]

Aj,ν =
⋃
i∈I

⋃
ν∈[1,γ]

Ai,ν . (10)

In this case, it requires Aj∗,ν ⊆ ⋃
i∈I

⋃
ν∈[1,γ] Ai,ν for

column vectors mj∗ , ∀j∗∈Sc\(Sc ∩ I), of Mµ.
The set Aj∗ and each Ai, i ∈ I, have at most pµs +

(γ − 1)p(µ−1)s elements in common. If Aj∗ and Ai have
one µ-flat in common at some ν-th row section, they have
at most one (µ − 1)-flats in common at other (γ − 1) row
sections. Since |I| ≤ γ − 1, there exists at least one row
section (say, ν∗-th row section) in which only (µ − 1)-flats
are shared in common. In this row section, we have Aj,ν∗ �⊆⋃

i∈I
⋃

ν∈[1,γ] Ai,ν . Thus it contradicts to eq. (10), and the
code is a (γ − 1)-resilient AC code when γ ≤ ps.
(ii) The case of γ > ps:

Taking a similar steps to the case (i), it can be shown that
the code should be a (ps − 1)-resilient AC code. Thus the
theorem holds. �

It follows from Theorems 3 that we can improve AC codes
which are constructed based on a QC-LDPC matrix over
a Galois field by using Euclidean geometry EG(m, ps). In
particular, if γ − 1 < ps and we utilize the relationship
between the µ-flats and points over EG(m, ps), the AC codes
Mµ are always more efficient than the conventional code
M0. About the obtained AC codes in this section, we can
assert a similar effectiveness mentioned in Sect. V-B.

We state some relationship between the conventional AC
code M0 and the AC code Mµ for a given EG(m, ps). If
we denote the incident matrix of 0-flats (namely, points) over
points in EG(m, ps) by B0, there is a relationship I = B0.
Therefore, it follows from substituting µ = 0 in the matrix
Mµ that we can obtain the matrix M0. This fact implies that
the conventional AC code M0 based on QC-LDPC matrix
is an instance of the AC codes Mµ when µ = 0. Thus a
class of the AC codes Mµ includes the AC code M0 as a
special case.

As illustration of the obtained EG-AC codes based on
QC-LDPC matrices, we show some examples by assuming
QC-LDPC matrix based on Reed-Solomon code [2] in Table
III. For GF(pms), (γ, ρ) QC-LDPC matrices with 1 ≤ γ ≤
pms − 1 and 1 ≤ ρ ≤ pms can be constructed. We choose
some γ and fix the value of ρ as ρ = pms to construct AC
codes as large as possible. We show the logarithm of the
code size for M0 in the column of “log2 ρfEG(0)” and for
Mµ∗ in that of “log2 ρfEG(µ∗)”.

Using the projective geometry PG(m, ps), we can obtain
a similar result. We only show the result without the proof.

Theorem 4: Assume that we allocate each column vector
of the incident matrix of µ-flats over points in PG(m, ps) to
a user’s codeword. This AC code has (i) the code length
γ(p(m+1)s − 1)/(ps − 1), (ii) the number of codewords
ρfPG(µ), and (iii) the resilience

� =
{

γ − 1, if γ − 1 < (p(µ+1)s − 1)/(pµs − 1),
ps, otherwies.
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TABLE III

EXAMPLES OF EG-AC CODES BASED ON QC-LDPC MATRICES

γ ρ (m, ps) N log2 ρfEG(0) log2 ρfEG(µ∗)

3 26 (3, 31) 81 9.46 11.57
3 80 (4, 31) 243 12.66 18.10
3 242 (5, 31) 729 15.84 24.50
4 63 (3, 41) 256 11.98 14.37
4 255 (4, 41) 1024 15.99 22.47
4 1023 (5, 41) 4096 20.00 30.50
5 124 (3, 51) 625 13.92 16.55
5 624 (4, 51) 3125 18.57 23.58

If γ − 1 < (p(µ+1)s − 1)/(pµs − 1), this code is also a
(γ − 1)-resilient AC code. �

C. AC Codes Based on Partially Regular Quasi-Cyclic
LDPC Matrix

Since a partially regular ({γ, γ − 1}, ρ) QC-LDPC matrix
satisfies (i) each column weight is at least γ − 1, (ii) any
pair of two columns has at most one 1-entry in common,
any AC code obtained from this matrix is a (γ − 2)-resilient
AC code from Lemma 2. However we can show its resilience
is greater than γ − 2.

Lemma 3: AC codes constructed from a partially regular
({γ, γ − 1}, ρ) QC-LDPC matrix are (γ − 1)-resilient AC
codes.
(Proof ) Noting that any pair of two columns with the
Hamming weight γ − 1 has no 1-entries in common, we
can prove the lemma. �

As in Sect. VI-B, we can use an improved method for
increasing the number of codewords, while keeping the
code length and the resilience. For a Euclidean geometry
EG(m, ps), consider extracting the zero point from this
geometry and the all lines including the zero point are
reduced to lines without this point. Let B′

µ be a (pms −1)×
fEG(µ) matrix whose rows corresponds to non-zero points
in EG(m, ps) and columns corresponds to the obtained lines.

Theorem 5: Assume that we substitute any submatrix
πai,j (I ′) with πai,j (B′

µ), then the AC code from this matrix
satisfies: (i) the code length γ(pms − 1), (ii) the number of
codewords ρfEG(µ) and (iii) the resilience � = {γ−1, ps−1}.

�

If γ − 1 < ps, the AC code is also a (γ − 1)-resilient AC
code.

VII. CONCLUSION AND FUTURE IMPROVEMENTS

In this paper, for a class of AC codes proposed by Trappe
et al., novel methods for increasing their coding rate were
proposed based on finite geometries, while their resilience is
maintained. We showed examples of the AC codes with the
maximal number of codewords for a given finite geometry.
The obtained AC code can have the greater number of
codewords than the conventional AC code by Trappe et al. as
the dimension m of the finite geometry FG(m, p2) increases.
Taking a similar approach to this construction method, other
methods for constructing efficient AC codes based on quasi-
cyclic LDPC matrices were also proposed. In this method,

although all the case does not necessarily guarantee the
same resilience, conditions on parameters which provides
the same resilience were derived. Consequently, we can
construct a fingerprinting system which can provide service
of distributing a digital content for more users, while keeping
both the resilience and the distortion to the original digital
contents.

Unfortunately, the codes obtained by the proposed method
have comparatively large code lengths, which implies the
distortion to the original content by these codes may be
large. An effective shortening method of the code while the
resilience is maintained should be devised.

In this paper, the resilience is guaranteed by assuming no
noise sequence. The performance of the AC codes should be
analyzed when there occurs a noise sequence.
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