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A Generalization of the Parallel Error Correcting Codes by
Allowing Some Random Errors∗

Hideki YAGI†a), Toshiyasu MATSUSHIMA††, Members, and Shigeichi HIRASAWA†††, Fellow

SUMMARY This paper generalizes parallel error correcting codes pro-
posed by Ahlswede et al. over a new type of multiple access channel called
parallel error channel. The generalized parallel error correcting codes can
handle with more errors compared with the original ones. We show con-
struction methods of independent and non-independent parallel error cor-
recting codes and decoding methods. We derive some bounds about the
size of respective parallel error correcting codes. The obtained results im-
ply a single parallel error correcting code can be constructed by two or more
kinds of error correcting codes with distinct error correcting capabilities.
key words: multiple access channel, parallel channel, code construction,
error-correcting code, linear block code

1. Introduction

Coding schemes for multiple access channel have been
widely discussed. Especially, for a multiple access adder
channel, many code constructions have been proposed [2],
[3], [6], [7], [12]. In contrast to conventional works, R.
Ahlswede et al. have considered a new model of multiple ac-
cess channel called a parallel error channel and discussed
coding schemes for this channel [1].

The parallel error channel is a bundle of m lines
through which messages are parallelly transmitted. Al-
though this channel is considered as an instance of par-
allel channel [4], [5], [8], when messages are transmitted
through the channel, highly correlated errors occur in re-
spective lines. For example, in a parallel port of a com-
puter, messages are transmitted through several lines simul-
taneously and disturbed by magnetic noise, etc. At that
time, messages at a time instance may be almost equally
disturbed. Namely, if an error occurs in a line, the probabil-
ity that an error occurs in its neighbor lines becomes high.
Ahlswede et al. have focused on this fact and, for some posi-
tive integer t, introduce a concept of t-parallel error, which
is defined as the same errors with the Hamming weight less
than or equal to t in all lines of the channel. They have de-
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rived necessary and sufficient conditions of codes correcting
any t-parallel error. They have given code constructions of
the optimal parallel error correcting codes with the largest
size for given a code length and t. Their work gives a large
amount of suggestions, however the channel model in [1] is
insufficient for practical applications.

In this paper, we generalize the concept of Ahlswede’s
parallel error channel, by allowing some random errors
along with the common errors in all lines. Subsequently,
we derive necessary and sufficient conditions of parallel er-
ror correcting codes whose line codes are dependent each
other. We show a code construction that achieves the max-
imal size for a given code length and t. Then, we consider
linear parallel error correcting codes whose line codes are
independent and derive a bound of the maximal achievable
rate (pair of dimensions of all line codes [1], [7]). Therefore,
following [1], we first focus on the case of m = 2, and then
we generalize the results to a general m lines case.

The main contribution of this paper is results for a gen-
eral m lines case. Contrary to the Ahlswede’s parallel error
channel, the definition of parallel errors for a general m lines
case is not straightforward and we can have several options
for the definition. In this paper, we divide m lines of the
channel into several groups. Let g denote the number of
such groups. Even for a fixed m, the codes with the maxi-
mum size can vary depending on the parameter g. Then we
discuss the average coding rate per a line by varying either
m or g.

This paper is organized as follows: in Sect. 2, we de-
scribe a new model and some definitions. Next, in Sect. 3,
we derive necessary and sufficient conditions for non-linear
parallel error correcting codes whose line codes are depen-
dent each other. Then in Sect. 4, we discuss linear indepen-
dent parallel error correcting codes. In Sect. 5, we gener-
alize the results obtained in Sect. 3 and 4 for a general m
lines case. In Sect. 6, we discuss coding rates of parallel er-
ror correcting codes compared with the case where we only
use conventional random error correcting codes. Finally in
Sect. 7, we state the concluding remarks.

2. Model and Definitions

For a prime power q, let GF(q) be a finite field of order
q. For any set A, let |A| express the size of A. Let n be
a positive integer. For any linear space B ⊆ GFn(q), let
dim(B) be the dimension of B. For any vector b ∈ GFn(q),
let wH(e) express the Hamming weight of b. We denote the
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Fig. 1 Illustration of a channel model for m = 2 lines case.

support of a vector b = (b1, b2, . . . , bn) ∈ GFn(q) by S(b) =
{ j| bj � 0}. For any sets A ⊆ GFn(q) and B ⊆ GFn(q), we
define the direct sum of these sets by A + B = {a + b| a ∈
A, b ∈ B}.

In this section, we describe a channel model of this pa-
per. In this paper, the two lines model is important to derive
results for a general m(≥ 3) lines case. Hence we here de-
scribe the two lines model.

Figure 1 shows the channel model considered in this
paper. We denote input alphabets of the two lines by X and
Y. In this paper, we assume that the set of the input and
output alphabets is a finite field GF(q) for a given prime
power q.

Assume that a codeword of a code C ⊂ Xn × Yn of
length 2n is input to the parallel error channel where the
first n symbols of the codeword are the first line’s message
and the last n symbols of it are another line’s message. Let
e ∈ GFn(q) and ε ∈ GFn(q) be error vectors in the first line
and the second line, respectively. We denote concatenation
of these error vectors e and ε by (e, ε) ∈ GF2n(q). In the
channel, there occurs an error vector (e, ε) ∈ GF2n(q) de-
fined as follows:

Definition 1: Assume that an error vector (e, ε) ∈ GF2n(q)
such that e, ε ∈ GFn(q) satisfying

wH(e) ≤ t + s, wH(ε) ≤ t + s (1)

and

wH(e − ε) ≤ 2s (2)

occurs and disturbs the input codeword. We call this pair of
errors (e, ε) a (t, s)-parallel error. In this paper, we assume
t ≥ s. �

We can regard that the parallel error (e, ε) ∈ GF2n(q)
consists of two kinds of error symbols: common error sym-
bols and distinct error symbols. Equations (1) and (2) im-
ply that the number of common error symbols are not greater
than t, and the number of distinct error symbols in each line
are not greater than s. Figure 2 shows the relationship of
these error symbols.

We define codes that can correct any (t, s)-parallel er-
rors.

Definition 2: Let (e, ε) and (e′, ε′) such that e, e′ ∈ GFn(q)

Fig. 2 The relationship of common error symbols and distinct error
symbols, where the numbers of common error symbols and distinct error
symbols are at most t and 2s, respectively.

and ε, ε′ ∈ GFn(q) be two distinct (t, s)-parallel errors. As-
sume that a code C ⊂ Xn × Yn has no pair of distinct code-
words c = (u, u), c′ = (u′, u′) ∈ C such that u, u′ ∈ Xn and
u, u′ ∈ Yn satisfying

c + (e, ε) = c′ + (e′, ε′). (3)

Then the code C of length n, the number of codewords
|C| which can correct any (t, s)-parallel errors is called an
(n, t, s, |C|) parallel error correcting code, or in short, an
(n, t, s, |C|) P-code over GF(q). �

Definition 3: An (n, t, s, |C|) P-code C ⊂ Xn × Yn is called
independent, or in short, an (n, t, s, |C|) IP-code of length n
and the number of codewords |C| if the code C is a Cartesian
product of subspaces U ⊆ Xn and V ⊆ Yn, i.e., C = U ×
V. If U and V are linear subspaces with k = dim(U) and
l = dim(V), an (n, t, s, |C|) IP-code C is called linear, or in
short, an (n, t, s, k, l) LIP-code of length n, the dimension of
line codes k and l. �

If a code C is an (n, t, s, |C|) IP-code, it consists of two
line codes, namely U and V. We denote codewords of the
line codes U and V by u and u, respectively. In this case,
any codeword of C is expressed as c = (u, u) ∈ GF2n(q). We
denote the received sequences corresponding to u and u by
u′ = u + e and u′ = u + ε, respectively. Figure 1 illustrates
an example of a parallel error channel model for m = 2 lines
case.

Note that if s = 0, a (t, 0)-parallel error (e, ε) satis-
fies e = ε and this model is reduced to that assumed in [1].
Therefore, the above model is a generalized version of that
in [1] by allowing at most s additional errors in each line
of the channel. The definitions of an (n, t, s, |C|) P-code, IP-
code and an (n, t, s, k, l) LIP-code are identical to those in
[1] when s = 0.

Throughout this paper, we denote the maximum size
of t-error correcting codes of the length n by A(n, t) and the
maximum dimension of linear t-error correcting codes of the
length n by L(n, t).

3. Non-independent Parallel Error Correcting Code

In this section, we consider parallel error correcting codes
whose line codes are not independent (i.e., (n, t, s, |C|) P-
code). The two encoders associated with each line cooperate
to generate a codeword c ∈ C.



YAGI et al.: A GENERALIZATION OF THE PARALLEL ERROR CORRECTING CODES
1747

3.1 Optimum P-Codes

We first derive necessary and sufficient conditions for non-
independent parallel error correcting codes.

LetU ⊆ Xn andV ⊆ Yn. ForU andV, let C0 be the
maximal subspace such thatU = C0+U0 andV = C0+V0

for some U0 ⊆ Xn, V0 ⊆ Yn, i.e., U = {u = x + u0| x ∈
C0, u0 ∈ U0} andV = {u = x + u0| x ∈ C0, u0 ∈ V0}.

We show the following lemma which holds for both
non-linear and linear (n, t, s, |C|) P-codes.

Lemma 1: Assume that a code C ⊂ Xn×Yn has codewords
expressed as

c = (x + u0, x + u0) (4)

where x + u0 ∈ U, x + u0 ∈ V and x ∈ C0. The code
C is an (n, t, s, |C|) P-code if and only if (iff) the following
conditions hold:

(i) The subspace C0 is a (t + s)-error correcting code.
(ii) ForU0,V0 given by C0 in the condition (i), define

Z = {u0 − u0| u0 ∈ U0, u0 ∈ V0}. (5)

ThenZ is a (2s)-error correcting code of the size |Z| =
|U0| × |V0|.

(Proof ) We will prove the if part, assuming that the con-
ditions (i) and (ii) hold.

Let the code C be not an (n, t, s, |C|) P-code. Then from
Eq. (3) for c = (x + u0, x + u0), c′ = (x′ + u′0, x

′ + u′0) ∈ C
such that x, x′ ∈ C0, we have

x + u0 + e = x′ + u′0 + e′, (6)

x + u0 + ε = x′ + u′0 + ε
′ (7)

where (e, ε) and (e′, ε′) are (t, s)-parallel errors. Suppose
that u0 � u′0 or u0 � u′0. Subtracting Eq. (7) from Eq. (6), we
have

(u0 − u0) − (u′0 − u
′
0) = (e′ − ε′) − (e − ε). (8)

Let dH(·, ·) denote the Hamming distance. Since

dH(u0 − u0, u′0 − u
′
0) = dH(e′ − ε′, e − ε)

≤ wH(e′ − ε′) + wH(e − ε) ≤ 4s, (9)

from the definition of Eq. (2), Eq. (8) implies the set Z,
given by Eq. (5), is not a (2s)-error correcting code (note
that the condition |Z| = |U0| × |V0| implies u0− u0 � u′0− u

′
0

unless u0 = u′0 and u0 = u′0). This contradicts the assump-
tion and C is an (n, t, s, |C|) P-code if u0 � u′0 or u0 � u′0.

Next suppose that c � c′ but u0 = u′0 and u0 = u′0.
In this case, similar to the proof of Lemma 1 in [1], the sub-
space C0 may not be a (t+s)-error correcting code. Actually,
from Eqs. (6) and (7), we have

x − x′ = e′ − e, (10)

x − x′ = ε′ − ε (11)

for x, x′ ∈ C0. These equations imply that the subspace C0

is not a (t+ s)-error correcting code and this is contradiction
to the assumption.

Next, we will prove the only-if part, assuming that the
code C is an (n, t, s, |C|) P-code.

Suppose that the condition (ii) does not hold. There
exist u0, u′0 ∈ U0 and u0, u′0 ∈ V0 satisfying Eq. (8), and
hence Eq. (3) if x = x′. This contradicts the assumption that
C is a P-code, and therefore the condition (ii) holds.

The claim that the condition (i) holds can also be
proved in a similar way to the proof of Lemma 1 in [1]. Sup-
pose that the condition (i) does not hold. Then if u0 = u′0
and u0 = u′0, there exist x, x′ ∈ C0 satisfying Eqs. (10) and
(11), and hence Eq. (3). This is contradiction, and thus the
condition (i) holds. Consequently, the conditions (i) and (ii)
hold. �

In Ahlswede’s model, only the condition for the sub-
space C0 is necessary. On the other hand, the channel model
in this paper requires the condition for the difference set
Z, given by Eq. (5). The (n, t, s, |C|) P-codes have structure
of combining two kinds of ordinary error correcting codes,
namely, a (t + s)-error correcting code and a (2s)-error cor-
recting code.

We show the following theorem about the size of a non-
independent P-code C.

Theorem 1: Let C be an (n, t, s,M) P-code with M = |C|.
Then we have the following statements:

(i) The size M is bounded as

M ≤ A(n, t + s) × A(n, 2s). (12)

(ii) For M = A(n, t + s) × A(n, 2s), there exists an
(n, t, s,M) P-code.

(Proof ) We will briefly show the statement (i). Appar-
ently, we have |C0| ≤ A(n, t + s) and |Z| = |U0| × |V0| ≤
A(n, 2s) from the conditions of Lemma 1. Then M =

|C0| × |U0| × |V0| ≤ A(n, t + s) × A(n, 2s).
Next, we will show that we can construct an (n, t, s,M)

P-code which satisfies (ii).
Construction I: Choose any (t + s)-error correcting

code of the size A(n, t+ s) as C0. We also choose a (2s)-error
correcting code of the size A(n, 2s) asV0 and letU0 = {0},
i.e., U = C0 since U = C0 + U0 from the definition. We
define V(x) = {x + u0| u0 ∈ V0} for x ∈ C0. Then the code
is constructed by C = {(u, u)|u ∈ U, u ∈ V(u)}.

For c = (u, u), c′ = (u′, u′) ∈ C, equations

u + e = u′ + e′, (13)

u + ε = u′ + ε′ (14)

never hold simultaneously since Eq. (13) for u � u′ itself
implies U(= C0) is not a (t + s)-error correcting code and
Eqs. (13) and (14) for u = u′ lead to u0−u′0 = (ε′−e′)−(ε−e),
which implies that V0 is not a (2s)-error correcting code
(note that u− u′ = (u+ u0)− (u′ + u′0) = u0 − u′0 if u = u′ and
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dH(ε − e, ε′ − e′) ≤ 4s). Hence the code C can correct any
(t, s)-parallel error.

Obviously, M = A(n, t + s) × A(n, 2s). Therefore the
code C is an (n, t, s,M) P-code. �

3.2 Decoding Algorithm for P-Codes

We here describe a decoding process of the P-codes men-
tioned in Lemma 1. Assume that a codeword c = (u, u) ∈ C
has been sent and a sequence c′ = c + (e, ε) is received by
the decoder where errors (e, ε) are a (t, s)-parallel error. We
denote u′ = u + e and u′ = u + ε.

Decoding Algorithm I:

(1) Calculate z = u′ − u′.
(2) For z, perform a decoding algorithm of the code Z to

find codewords u0 and u0, and an error pattern f = ε−e.
(3) Perform a decoding algorithm of the codeC0 by erasing

symbols of u′ − u0 in the positions of S( f ).

We will show that Decoding Algorithm I finds the
transmitted codeword c = (u, u) ∈ C if there occurs a (t, s)-
parallel error.

Since u = x + u0 and u = x + u0, we obtain z =
u′ − u′ = u0 − u0 + ε − e = u0 − u0 + f in the step (1).
Since wH( f ) ≤ 2s and the code Z is a (2s)-error correcting
code, a conventional decoding algorithm for the codeZ can
correctly find codewords u0 and u0 from z = (u0 − u0) + f
(note that the condition |Z| = |U0| × |V0| in Lemma 1 im-
plies there is one-to-one correspondence between (u0 − u0)
and a pair (u0, u0)). Then we can obtain the error pattern f
by calculating f = z − (u0 − u0) in the step (2). In the step
(3), we regard symbols of the sequence u′ − u0 in the posi-
tions of S( f ) as erasure symbols. We denote the resultant
sequence by ũ. Since the code C0 is a (t+ s)-error correcting
code, it has a minimum distance d(C0) ≥ 2(t+ s)+1 and cor-
rects t errors and 2s erasure symbols [9], [10]. Therefore we
can obtain the codeword x ∈ C0 from ũ and subsequently,
u = x + u0 and u = x + u0. Thus Decoding Algorithm I
surely finds c = (u, u).

4. Linear Independent Parallel Error Correcting Code

4.1 Necessary and Sufficient Conditions for LIP-Codes

In this section, we discuss (n, t, s, |C|) IP-codes C = U ×V.
We only consider linear codes asU ⊆ Xn andV ⊆ Yn, i.e.,
the code C is an LIP-code.

Lemma 2: For two linear subspacesU ⊆ Xn andV ⊆ Yn,
a code C = U × V is an (n, t, s, k, l) LIP-code with k =
dim(U) and l = dim(V) iff the following conditions hold:

(i) Let C0 = U ∩ V. Then C0 is a linear (t + s)-error
correcting code.

(ii) The direct sumU+V is a linear (2s)-error correcting
code.

(Proof ) First we will prove the if part, assuming that the
conditions (i) and (ii) hold but the code C is not an LIP-
code. There exist c = (u, u), c′ = (u′, u′) ∈ C and (t, s)-
parallel errors (e, ε) and (e′, ε′) which satisfy Eqs. (13) and
(14). First suppose (u− u′) � C0 or (u− u′) � C0, then it can
be easily shown that u − u � u′ − u′. Then from Eqs. (13)
and (14), u − u − (u′ − u′) = f − f ′ where f = ε − e and
f ′ = ε′ − e′. Since wH( f ) ≤ 2s, wH( f ′) ≤ 2s and u − u ∈
U+V, u′ −u′ ∈ U+V, this contradicts the assumption that
the condition (ii) holds.

The claim that the code C0 is a (t + s)-error correcting
code can be proved in a similar way to the proof of Lemma
2 in [1]. Hence we omit the proof here.

As for the only-if part, we can show the claim by as-
suming the condition (i) or (ii) does not hold. �

Although we cannot obtain the optimal IP-code with
the maximum size, considering LIP-codes, we can obtain
bounds on achievable rates (pair of dimensions of all line
codes [1], [7]) of LIP-codes.

Theorem 2: For given positive integers n, t, s and k1, k2, if
there exists an (n, t, s, k1, k2) LIP-code, k1 and k2 satisfy

k1 + k2 ≤ L(n, t + s) + L(n, 2s) (15)

and k1 ≤ n, k2 ≤ n.

(Proof ) Assume that there exists an (n, t, s, k1, k2) LIP-
code such that

k1 + k2 > L(n, t + s) + L(n, 2s). (16)

Since C0 = U∩V from Lemma 2, dim(U +V) = k1 + k2 −
dim(C0). The condition (i) of Lemma 2 requires the subcode
C0 to be a (t + s)-error correcting code, whose dimension
satisfies dim(C0) ≤ L(n, t + s). From Eq. (16), we have

dim(U +V) ≥ k1 + k2 − L(n, t + s)

> L(n, 2s), (17)

and thusU+V cannot be a (2s)-error correcting code. From
Lemma 2, the code C cannot be an (n, t, s, k1, k2) LIP-code
and this contradicts the assumption. �

From Theorem 2, the dimension pair of any
(n, t, s, k1, k2) LIP-code is upper-bounded by L(n, t + s) +
L(n, 2s). The dimension of an LIP-code depends on those
of line codes U and V. Although it is not straightforward
to construct an (n, t, s, k1, k2) LIP-code with the maximum
achievable rate, we can derive some lower-bound on it. Let
C′ be a linear t-error correcting code with the maximum di-
mension L(n, t). For some integer t′ > t, let K(n, t, t′) denote
the maximum dimension of a linear t′-error correcting code,
which is a subcode of C′ with the dimension L(n, t).

Theorem 3: For given positive integers n, t, s, if there
exist any (n, t, s, k1, k2) LIP-codes, we can construct an
(n, t, s, k1, k2) LIP-code C which satisfies

L(n, 2s) + K(n, 2s, t + s) ≤ k1 + k2 (18)
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and k1 ≤ n, k2 ≤ n.

(Proof ) The following construction gives an (n, t, s, k1, k2)
LIP-code which satisfies Eq. (18).

Construction II: We choose any linear (2s)-error cor-
recting code such that its dimension is L(n, 2s) and its linear
subcode correcting any t + s random errors has the dimen-
sion K(n, 2s, t + s) as the code U + V. We denote k =
K(n, 2s, t + s) bases of the linear subcode by α1,α2, . . . ,αk.
Letting k′ = L(n, 2s), we denote other k′ − k bases ofU +V
by β1, β2, . . . , βk′−k.

Now we divide {1, 2, . . . , k′−k} into two disjoint sets I1

and I2 (with I1∩I2 = ∅) such that {α1,α2, . . . ,αk}∪{βi| i ∈
I1} are bases of U and {α1,α2, . . . ,αk} ∪ {βi| i ∈ I2} are
bases ofV. Let C = U×V. Then we have (k1−k)+(k2−k) =
k′ − k where k1 = dim(U) and k2 = dim(V). From Lemma
2, the code C is an (n, t, s, k1, k2) LIP-code. It is readily seen
that the dimension pair (k1, k2) satisfies k1 + k2 = L(n, 2s) +
K(n, 2s, t + s). �

If maximum distance separable (MDS) codes [9], [10]
exist for a number of symbols q and a code length n, we
can construct an (n, t, s, k1, k2) LIP-code which achieves the
maximum achievable rate.

Corollary 1: If there exists a q-ary MDS code of a length
n, we can construct an (n, t, s, k1, k2) LIP-code such that

k1 + k2 = L(n, t + s) + L(n, 2s) (19)

and k1 ≤ n, k2 ≤ n.

(Proof ) From Lemma 2, we choose any linear (t+s)-error
correcting code of the dimension k = L(n, t + s) as the code
C0 = U ∩V. Note that such code should be an MDS code
in this case since the dimension of a (t + s)-error correct-
ing code C̃ is bounded by the well-known Singleton bound
dim(C̃) ≤ n − d(C̃) + 1 where d(C̃) denotes the minimum
distance of C̃, and MDS codes satisfy this with equality.
Furthermore, we choose a linear (2s)-error correcting code
C′ (which should be also an MDS code) of the dimension
k′ = dim(C′) = L(n, 2s) which is a super code of C0. Note
that we can always choose such pair of MDS codes since
an MDS code of a higher dimension includes an MDS code
of a lower dimension as its subspace. In the sequel, we can
take the same procedure as Construction II. From Lemma
2, it is obvious the code C is an (n, t, s, k1, k2) LIP-code and
k1 + k2 = k + k′ = L(n, t + s) + L(n, 2s). �

For a prime power q, if a positive integer n satisfies |q−
n| ≤ 1, there exist (lengthened) Reed-Solomon codes with
any dimension k ≤ n [9]. Thus in this case, we can construct
an (n, t, s, k1, k2) LIP-code which achieves Eq. (19).

4.2 Decoding Algorithm for LIP-Codes

We here mention a decoding process of the LIP-code ob-
tained by Construction II. Let U0 and V0 satisfy U =

C0 + U0 and V = C0 + V0, respectively. Note that since

C0 is a common linear subspace of U and V, we can al-
ways choose such U0 and V0. As in Sect. 3, we assume
that a codeword c = (u, u) = (x + u0, y + u0) ∈ C with
x, y ∈ C0, u0 ∈ U0 and u0 ∈ V0 has been transmitted and
a sequence c′ = c + (e, ε) is received by the decoder where
(e, ε) is a (t, s)-parallel error. We denote u′ = u + e and
u′ = u + ε.

For an LIP-code C, we denote a generator matrix of
the code C0 by G0. Similarly, we denote a generator matrix
of U0 and V0 by G1 and G2, respectively. The sizes of
G0,G1,G2 are k × n, (k1 − k) × n, (k2 − k) × n, respectively.
Let an overall generator matrix ofU +V be

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
G0

G1

G2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (20)

of the size (k1 + k2 − k) × n, and then the rank of G is full.

Decoding Algorithm II:

(1) Calculate z = u′ − u′.
(2) For z, perform a decoding algorithm for the codeU+V

to find a codeword u− u and an error pattern f = ε − e.
(3) Calculate

a = (a1, a2, . . . , ak1+k2−k) = (u − u)G† (21)

where G† = GT (GGT )−1 is a generalized inverse ma-
trix∗ (Moore-Penrose pseudo-inverse matrix [11]) of
G and calculate u0 = (ak+1, . . . , ak1−k)G1 ∈ U0 and
u0 = (ak1−k+1, . . . , ak1+k2−k)G2 ∈ V0.

(4) Calculate u′ −u0 and perform a decoding algorithm for
the code C0 by erasing symbols of u′−u0 in the support
S( f ).

(5) Calculate u′ − u0 and perform a decoding algorithm for
the code C0 by erasing symbols of u′ − u0 in the support
S( f ).

We will show the validity of Decoding Algorithm II
that it corrects any (t, s)-parallel error.

Note that z = u′ − u′ = u − u + f in Step (1) and the
equation

u − u = (y − x) + u0 − u0 = aG (22)

holds for some a ∈ GFk1+k2−k(q). Since wH( f ) ≤ 2s, the
decoding algorithm for the codeU +V finds u − u and f in
Step (2). If we multiply the generalized inverse matrix G†

to each term of Eq. (22) by right,

(u − u)G† = aGG† = a (23)

where the last equation can be obtained by the definition of
G† as GG† = I (I denotes the identity matrix). Therefore,
in Step (3), we can obtain a and re-encoding operation gen-
erates u0 ∈ U0 and u0 ∈ V0. In Step (4), we calculate
u′ − u0 = x + e with x ∈ C0. Since the code C0 has the min-
imum distance d(C0) ≥ 2(t + s) + 1, this can correct t errors

∗The symbol T denotes transposition of a matrix.
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and 2s erasure symbols [9], [10]. Then from u′ −u0, we can
obtain x correctly by regarding the symbols of u′ −u0 in the
support S( f ) as erasure symbols. We can show similarly for
Step (5) that we can obtain y ∈ C0 correctly by regarding the
symbols of u′−u0 in S( f ) as erasure symbols. Consequently,
we can correct the (t, s)-parallel error.

5. General Case with m ≥ 3 Lines

In this section, we generalize the results in Sect. 3 and 4 for
m ≥ 3 lines case.

5.1 Definition of (t, s)-Parallel Error for General Case

First, we define (t, s)-parallel error for m ≥ 3 lines case.
Intuitively, in the Ahlswede’s channel model, the definition
of (t, 0)-parallel error for m ≥ 3 lines case is unique, i.e,
error patterns of all m lines are exactly the same with the
Hamming weight less than or equal to t. On the other hand,
in the model of this paper, we can consider several options
to define (t, s)-parallel error for the general m lines case.
Assume that error sequences are denoted by e1, e2, . . . , em

where each ei ∈ GFn(q) occurs in the i-th line of the paral-
lel error channel. We denote concatenation of these m error
sequences by (e1, e2, . . . , em) ∈ GFmn(q).

Definition 4: [Type I (t, s)-Parallel Error] Assume that
an error vector (e1, e2, . . . , em) satisfies

wH(ei) ≤ t + s (24)

for i = 1, 2, . . . ,m and the inequality

wH(ei − ei+1) ≤ 2s (25)

for i = 1, 2, . . . ,m − 1. Then the error vector (e1, e2, . . . , em)
is referred to as Type I (t, s)-parallel error. �

We will consider another model of (t, s)-parallel er-
rors. We denote the indices set of m channel lines by
L = {1, 2, . . . ,m}. We assume the set L is divided into g
(1 ≤ g ≤ �m/2) disjoint subsets L1,L2, . . . ,Lg such that
|L j| ≥ 2 for j = 1, 2, . . . , g and elements of L j are posi-
tive integers from

∑ j−1
i=1 |Li| + 1 to

∑ j
i=1 |Li|. For example,

L1 = {1, 2, . . . , |L1|} and L2 = {|L1| + 1, . . . ,m} if g = 2.
It is readily seen that the support of common error

symbols between ei and ei′ denoted by T (ei, ei′ ) can be ex-
pressed as

T (ei, ei′ ) =
(
S(ei) ∪ S(ei′ )

)
\ S(ei − ei′ ). (26)

We define another model of (t, s)-parallel errors as follows:

Definition 5: [Type II (t, s)-Parallel Error] Assume that
an error vector (e1, e2, . . . , em) satisfies Eq. (24) for i =
1, 2, . . . ,m and Eq. (25) for i = 1, 2, . . . ,m − 1. We further
assume that the common error symbols of error vectors in
lines indexed by L j are exactly the same, i.e., the equation

T (ei, ei+1) = T (ei+1, ei+2) (27)

holds for any i, i + 1, i + 2 ∈ L j if |L j| ≥ 3. Then the error
vector (e1, e2, . . . , em) is referred to as Type II (t, s)-parallel
error. �

Although the restriction of Type II model seems too
strict, if we set s = 0, this model is reduced to the model
of Ahlswede et al. [1]. Note that if m is even and g = m/2,
the Type II (t, s)-parallel error is reduced to the Type I (t, s)-
parallel error. Therefore if m is even, the parallel error chan-
nel of Type II model is a wider class than that of Type I
model†.

Now we define parallel error correcting codes for par-
allel error channel of both Type I and II (t, s)-parallel errors.

Definition 6: For m ≥ 3, assume that the code C is a sub-
space of a Cartesian product of m GFn(q). If there ex-
ists no pair of distinct codewords c = (c1, c2, . . . , cm), c′ =
(c′1, c

′
2, . . . , c

′
m) ∈ C with ci, c′i ∈ GFn(q) satisfying

c + (e1, e2, . . . , em) = c′ + (e′1, e
′
2, . . . , e

′
m), (28)

where (e1, e2, . . . , em) and (e′1, e
′
2, . . . , e

′
m) are (t, s)-parallel

errors, the code C is called an (n,m, t, s, |C|) P-code． �

An (n,m, t, s, |C|) P-code is called an IP-code if C =
C1 × C2 × · · · × Cm =

∏m
i=1 Ci where Ci ⊆ GFn(q)

is the i-th line code. If each line code Ci is a linear
code of the dimension ki, an IP-code is referred to as an
(n,m, t, s, {k1, k2, . . . , km}) LIP-code.

5.2 (t, s)-Parallel Error Correcting Code for Type II Model

As mentioned in Sect. 5.1, the Type II model is a wider
class of Type I model and therefore we show only results
for Type II model. We consider codes that can correct any
Type II (t, s)-parallel errors for a general m ≥ 3 lines case.
In this model, the indices set L of lines is divided into g
disjoint subset L1,L2, . . . ,Lg with the size |Li| ≥ 2 for i =
1, 2, . . . , g. Defining l( j) =

∑ j−1
i=1 |Li| + 1 for j = 2, 3, . . . , g,

the first index in each L j is denoted by l( j).

Lemma 3: Assume that there are subspaces C0 ⊆ GFn(q)
and U1,U2 ⊆ GFn(q) such that any codewords in the first
two lines (c1, c2) ∈ GF2n(q) are expressed as

(c1, c2) = (x + u1, x + u2) (29)

where x ∈ C0 and ui ∈ Ui. A code C, given by C =
{(c1, c2)} ×

∏m
i=3 Ci where Ci ⊆ GFn(q), is the i-th line code,

is an (n,m, t, s,M) P-code iff the following conditions hold:

(i) The subspace C0 is a (t + s)-error correcting code.
(ii) ForU1 andU2, define

Z1,2 = {u1 − u2| u1 ∈ U1, u2 ∈ U2}. (30)

ThenZ1,2 is a (2s)-error correcting code.
(iii) For i ∈ {l( j), l( j) + 1| j = 2, 3, . . . , g}, the i-th line

code Ci is a (2s)-error correcting code.
†Note that even when m is odd, we can make Type II model

include Type I model as a special case by allowing |Lg| = 1.
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(iv) For i � {l( j), l( j) + 1| j = 1, 2, . . . , g}, the i-th line
code Ci is an s-error correcting code.

(Proof ) See Appendix A. �

Remark 1: Although Lemma 3 assumes that the first and
the second line codes play particular roles for simplicity, we
can choose any two consecutive indices i, i + 1 of lines to
impose such roles. Furthermore, the number of such partic-
ular line codes is not necessarily two. Even if the number
of particular line codes is greater than two, we can discuss
similarly. Similar arguments can apply to Lemma 4 stated
later, however we assume as in Lemma 3 to simplify the
discussion. �

Theorem 4: Let C be an (n,m, t, s,M) P-code with M =

|C|. We have the following statements:

(i) The size of C is bounded as

M ≤ A(n, t + s) × A(n, 2s)2g−1 × A(n, s)m−2g. (31)

(ii) For the size M = A(n, t+s)×A(n, 2s)2g−1×A(n, s)m−2g,
there exists an (n,m, t, s,M) P-code.

(Proof ) It is straightforward to show that Eq. (31) is sat-
isfied from Lemma 3. We will show a construction of an
(n,m, t, s,M) P-code whose size achieves (ii). We can take a
(t+ s)-error correcting code with the size A(n, t+ s) as C0 and
a (2s)-error correcting code with the size A(n, 2s) asU2 and
Ci for i ∈ {l( j), l( j) + 1| j = 2, 3, . . . , g}. We set U1 = {0}.
Furthermore, we can take an s-error correcting code with
the size A(n, s) as Ci for i � {l( j), l( j) + 1| j = 1, 2, . . . , g}.
Apparently, the code C given by C = C1,2 ×

∏m
i=3 Ci sat-

isfies all the condition of Lemma 3, and its size is M =

A(n, t + s) × A(n, 2s)2g−1 × A(n, s)m−2g. �

Now we consider LIP-codes C expressed as C =∏m
i=1 Ci where the i-th line code Ci ⊆ GFn(q) is linear.

Lemma 4: A code C is an (n,m, t, s, {k1, k2, . . . , km}) LIP-
code iff the following conditions hold:

(i) The subcode C0 = C1 ∩ C2 is a linear (t + s)-error
correcting code.

(ii) For C1 and C2, the direct sum C1+C2 is a linear (2s)-
error correcting code.

(iii) For i ∈ {l( j), l( j) + 1| j = 2, 3, . . . , g}, the i-th line
code Ci is a (2s)-error correcting code.

(iv) For i � {l( j), l( j) + 1| j = 1, 2, . . . , g}, the i-th line
code Ci is an s-error correcting code.

(Proof ) We can prove the lemma in a similar way to
Lemma 3, and hence we omit the proof. �

Theorem 5: For given positive integers n, t, s and {k1, k2,
. . . , km}, if there exists an (n,m, t, s, {k1, . . . , km}) LIP-code,
the dimension tuple {k1, . . . , km} is upper-bounded as

m∑
i=1

ki ≤ L(n, t + s)

+(2g − 1)L(n, 2s) + (m − 2g)L(n, s). (32)

Furthermore, we can obtain the code whose dimension tuple
{k1, . . . , km} satisfies

m∑
i=1

ki ≥ K(n, 2s, t + s)

+(2g − 1)L(n, 2s) + (m − 2g)L(n, s), (33)

where K(n, 2s, t + s) denotes the maximum dimension of a
linear (t+ s)-error correcting code contained in a linear (2s)-
error correcting code with the dimension L(n, 2s).

(Proof ) Based on the proofs in Theorems 2 and 4, we
have Eq. (32). We can also obtain a construction of an
(n,m, t, s, {k1, k2, . . . , km}) LIP-code which satisfies Eq. (33)
in a similar manner to the proof of Theorem 3. �

6. Discussion about Coding Rate

As mentioned in Sect. 5.1, when m is even and g = m/2, the
Type II model is identical to the Type I model. Furthermore,
we can modify the definition of Type II (t, s)-parallel errors
to always include Type I (t, s)-parallel errors as a special
case, although we do not modify so to simplify the discus-
sion. From these reasons, in the following, we will discuss
coding rate of P-codes for Type II model in main.

Define the coding rate per a line of C as

R(m) =
logq |C|

nm
. (34)

This coding rate indicates the average coding rate per a line.
As this rate is greater, we can say that a code becomes more
efficient for a fixed m. We will consider the behavior of this
coding rate by varying g or m.

[About the Coding Rate with Respect to g]
From Theorem 4, as the number g of disjoint set be-

comes smaller, the size of a P-code tends to be large for fixed
n and m. The size M is the largest if g = 1, i.e., the case in
which the common error symbols in all lines are identical.
In this case, we have

R(m) =
1

nm

{
logq A(n, t + s) + logq A(n, 2s)

+(m − 2) logq A(n, s)
}
. (35)

from Theorem 4.

[About the Coding Rate with Respect to m]
For a given g, as the number of lines, m, becomes

greater, the size of a P-code tends to be large. For Type
II parallel errors, from Theorem 4, we can have

R(m) =
1

nm

{
logq A(n, t + s) + (2g − 1) logq A(n, 2s)

+(m − 2g) logq A(n, s)
}
. (36)

Thus R(m) = (1−2g/m)(logq A(n, s))/n+O(m−1), obtaining
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lim
m→∞

R(m) = lim
m→∞

{(
1 − 2g

m

) logq A(n, s)

n

}

=
logq A(n, s)

n
. (37)

Equation (37) implies the coding rate per a line tends to
close to that of the optimum s-error correcting code for Type
II parallel error channel as the number of lines increases.
Note that we need to use a (t + s)-error correcting code as
each line code for correcting any (t, s)-parallel errors when
we only adopt ordinary random error correcting codes in
respective lines. The coding rate per a line achieves only
(logq A(n, t + s))/n in this case, which implies the effective-
ness of use of parallel error correcting codes.

When m is even and g = m/2, Type II model is reduced
to Type I model. By a similar argument to Type II case, for
Type I case, we obtain R(m) = (1 − 1/m)(logq A(n, 2s))/n +
(m−1) and

lim
m→∞

R(m) = lim
m→∞

{(
1 − 1

m

) logq A(n, 2s)

n

}

=
logq A(n, 2s)

n
. (38)

from Theorem 4. Equation (38) implies the coding rate per
a line tends to close to that of the optimum (2s)-error cor-
recting code for Type I parallel error channel as the num-
ber of lines increases. Note that the coding rate per a line
achieves only (logq A(n, t + s))/n when we just use ordinary
error correcting codes in respective lines, which implies the
structure of parallel error correcting codes works well for
parallel error channel.

As for LIP-codes, we can discuss similarly based on
Theorem 5. Hence we can show the effectiveness of the par-
allel error correcting codes compared with the case where
we just use ordinary error correcting codes in respective
lines.

7. Conclusion

In this paper, we generalized the notion of the parallel er-
ror channel proposed by Ahlswede et al. by allowing some
additional random errors to a conventional parallel error.
Then we derived necessary and sufficient conditions for non-
independent and linear independent parallel error correcting
codes. We showed some construction methods for both non-
independent and linear independent codes. Decoding algo-
rithms for these codes are given by combining two kinds of
ordinary error correcting codes. Therefore we can find an
efficient algorithm for linear parallel error correcting codes.
Finally we generalized the results for two lines case to a gen-
eral m ≥ 3 lines case. In this case, we considered two types
of generalized parallel errors. The obtained result includes
the foregoing result for the two lines case as a special case.

As for future works, the probabilistic models of par-
allel error should be discussed. Conditions of the optimal
independent parallel error correcting code for given n, t and

s is also to be derived.

Acknowledgments

The authors would like to thank Associate Editor, Prof.
M. Mohri, and anonymous reviewers for their valuable
comments. This work is supported by Waseda University
Grant for Special Research Project No. 2006B-293 and the
Telecommunications Advancement Foundation (TAF).

References

[1] R. Ahlswede, B. Balkenhol, and N. Cai, “Parallel error correcting
codes,” IEEE Trans. Inf. Theory, vol.48, no.4, pp.959–962, April
2002.

[2] S. Chang and E.J. Weldon, Jr., “Coding for T -user multiple-access
channels,” IEEE Trans. Inf. Theory, vol.IT-25, no.6, pp.684–691,
Nov. 1979.

[3] J. Cheng and Y. Watanabe, “A multiuser k-ary code for the noisy
multiple-access adder channel,” IEEE Trans. Inf. Theory, vol.47,
no.6, pp.2603–2607, Sept. 2001.

[4] T. Cover and J. Thomas, Elements of Information Theory, Wiley &
Sons, New York, 1991.

[5] R.G. Gallager, Information Theory and Reliable Communication,
Wiley & Sons, New York, 1968.

[6] L. Gyorfi and B. Lacmy, “Signature coding and information transfer
for the multiple access adder channel,” Proc. 2004 IEEE Inf. Theory
Workshop, pp.242–246, San Antonio, Texas, Oct. 2004.

[7] T. Kasami and S. Lin, “Bounds on the achievable rates of block
coding for a memoryless multiple-access channel,” IEEE Trans. Inf.
Theory, vol.IT-24, no.2, pp.187–197, March 1978.

[8] R. Liu, P. Spasojevic’, and E. Soljanin, “Reliable channel regions for
good binary codes transmitted over parallel channels,” IEEE Trans.
Inf. Theory, vol.52, no.4, pp.1405–1424, April 2006.

[9] F.J. McWilliams and N.J.A. Sloane, The Theory of Error Correcting
Codes, North-Holland, Amsterdam, The Netherlands, 1986.

[10] W.W. Peterson and E.J. Weldon, Jr., Error-Correcting Codes, 2nd
ed., MIT Press, Cambridge, MA, 1972.

[11] G. Strang, Linear Algebra and Its Applications, Harcourt Brace Jo-
vanovich, San Diego, 1988.

[12] K. Tokiwa, H. Matsuda, and H. Tanaka, “A code construction for M-
Choose-T communication over the multiple-access adder channel,”
IEICE Trans. Fundamentals, vol.E78-A, no.1, pp.94–99, Jan. 1995.

[13] H. Yagi, T. Matsushima, and S. Hirasawa, “A generalization of the
parallel error correcting codes,” Proc. 2006 IEEE Inf. Theory Work-
shop, pp.229–233, Chengdu, China, Oct. 2006.

Appendix A: Proof of Lemma 3

First we will prove the if part, assuming that the code C is
not an (n,m, t, s, |C|) code. From the assumption that C =
{(c1, c2)} ×

∏m
i=3 Ci, we can consider two distinct codewords

c = (c1, c2, c3, . . . , cm) ∈ C and c = (c′1, c
′
2, c3, . . . , cm) ∈

C where codewords ci (i = 3, 4, . . . ,m) of the last m − 2
line codes are identical. Supposing two (t, s)-parallel errors
e = (e1, . . . , em) and e′ = (e′1, . . . , e

′
m) have identical error

patterns ei (i = 3, 4, . . . ,m) in the last m− 2 lines, there exist
two pairs (e1, e2) and (e′1, e

′
2) satisfying

x + u1 + e1 = x′ + u′1 + e′1, (A· 1)

x + u2 + e2 = x′ + u′2 + e′2, (A· 2)



YAGI et al.: A GENERALIZATION OF THE PARALLEL ERROR CORRECTING CODES
1753

where (c1, c2) = (x + u1, x + u2) and (c′1, c
′
2) = (x′ +

u′1, x
′ + u′2), since C is not an (n,m, t, s, |C|) code．Subtract-

ing Eq. (A· 2) from Eq. (A· 1), we have

u1 − u2 − (u′1 − u′2) = e′1 − e′2 − (e1 − e2), (A· 3)

and this implies the code Z1,2 is not a (2s)-error correcting
code, i.e., the condition (ii) does not hold. We can easily
prove that the condition (i) does not hold by similar proce-
dure to the proof of Lemma 1.

For some i∗ ∈ {l( j), l( j) + 1| j = 2, 3, . . . , g}, we con-
sider two codewords c, c′ ∈ C whose i∗-th line codewords
ci∗ and c′i∗ are only distinct, i.e., c j = c′j for any j � i∗. Sup-
posing two (t, s)-parallel errors e and e′ whose i∗-th lines’
error patterns ei∗ and e′i∗ are only distinct, we may have

ci∗ + ei∗ = c′i∗ + e′i∗ (A· 4)

since C is not an (n,m, t, s, |C|) code. Subtracting ci∗−1+ei∗−1

from both sides of Eq. (A· 4),

ci∗ − c′i∗ = (e′i∗ − ei∗−1) − (ei∗ − ei∗−1) (A· 5)

holds, which implies the i∗-th line code Ci∗ is not an (2s)-
error correcting code (note that we here suppose ci∗−1 =

c′i∗−1 and ei∗−1 = e′i∗−1). Namely, the condition (iii) does
not hold.

For some i∗ � {l( j), l( j)+1| j = 1, 2, . . . , g}, by a similar
argument, we may have

ci∗ − c′i∗ = e′i∗ − ei∗ . (A· 6)

If (ei∗−2, ei∗−1) = (e′i∗−2, e
′
i∗−1), the common error symbols

between ei∗ and e′i∗ are the same as those between ei∗−2 and
ei∗−1 from the definition of Type II (t, s)-parallel error, i.e.,
we have

T (ei∗ , e′i∗ ) = T (ei∗−2, ei∗−1). (A· 7)

Thus we can obtain dH(ei∗ , e′i∗ ) ≤ 2s, and Eq. (A· 6) indi-
cates the i∗-th line code Ci∗ is not an s-error correcting code
(note that we here suppose (ci∗−2, ci∗−1) = (c′i∗−2, c

′
i∗−1) and

(ei∗−2, ei∗−1) = (e′i∗−2, e
′
i∗−1)). Namely, the condition (iv) does

not hold.
Next we will consider the only-if part, assuming the

conditions (i), (ii), (iii) and (iv) do not hold. In this case, we
can easily show that there exist codewords c, c′ ∈ C satisfy-
ing c + e = c′ + e′ even if two distinct (t, s)-parallel errors
occur. �
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