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A Combined Matrix Ensemble of Low-Density Parity-Check Codes
for Correcting a Solid Burst Erasure
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SUMMARY A new ensemble of low-density parity-check (LDPC)
codes for correcting a solid burst erasure is proposed. This ensemble is an
instance of a combined matrix ensemble obtained by concatenating some
LDPC matrices. We derive a new bound on the critical minimum span
ratio of stopping sets for the proposed code ensemble by modifying the
bound for ordinary code ensemble. By calculating this bound, we show
that the critical minimum span ratio of stopping sets for the proposed code
ensemble is better than that of the conventional one with keeping the same
critical exponent of stopping ratio for both ensemble. Furthermore from
experimental results, we show that the average minimum span of stopping
sets for a solid burst erasure of the proposed codes is larger than that of the
conventional ones.
key words: low-density parity-check code, solid burst erasure, stopping
set, minimum span, belief-propagation decoding

1. Introduction

A combination of low-density parity-check (LDPC) codes
and the belief-propagation (BP) decoding algorithm attains
a good decoding performance, and its decoding complexity
is quite small [1], [2]. Most of studies of LDPC codes as-
sume random errors or random erasures. When we consider
using LDPC codes in a practical situation, such as the packet
based transmission used for the wireless communications,
we must take into account correction capabilities of not only
random errors or erasures but also burst ones. For the packet
based transmission used for the wireless transmission, the
burst erasure has been occurred under bad transmission en-
vironment [9]. In this paper, we only focus on the solid burst
erasure∗ assuming the worst case for the burst erasure.

Using LDPC codes for correcting single or multi-
ple solid burst erasures has been studied in [6], [10], [11].
M. Yang et al. have proposed the Lmax algorithm, which can
evaluate a maximum correctable length of solid burst era-
sure for a given parity-check matrix of LDPC codes by an
exhaustive search method. T. Wadayama [6] and E. Paolini
and M. Chiani [10] have proposed column permutation al-
gorithms which can increase the value of Lmax for a given
parity-check matrix of an LDPC code. The present authors
also have proposed a column permutation algorithm which
can improve the performance for correcting multiple solid
burst erasures [11].

On the other hand, for analyzing the performance of
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LDPC codes, the approach of the code ensemble analysis
has been taken [1], [2], [5], [7]–[9], [12]. The analysis of the
LDPC code ensemble for the BP decoding algorithm over
the erasure channel has been well studied [3], [5], [7], [8],
[12]. Wadayama has formulated a method for calculating
the bound of the minimum length of uncorrectable single
solid burst erasure for the LDPC code ensemble by the BP
decoding algorithm [9].

In this paper, a new ensemble of LDPC codes suitable
for correcting a solid burst erasure is proposed. This en-
semble is an instance of a combined matrix ensemble [12]
obtained by concatenating the plural number of LDPC ma-
trices and is a subclass of LDPC codes defined on the reg-
ular Tanner graph. We derive a new bound on the critical
minimum span ratio of stopping sets for the proposed code
ensemble by modifying the derivation method in [9]. By
calculating the above bound, we show that it is better than
the standard LDPC codes keeping the critical exponent of
stopping ratio for both ensembles equal. Furthermore from
experimental results, we show that the average minimum
span of stopping sets of a solid burst erasure for both the
proposed code and the code in [11] have larger than that for
the conventional one.

This paper is organized as follows. In Sect. 2, we de-
scribe the LDPC codes, the Tanner graphs, the LDPC code
ensemble, the stopping set, and the span of stopping sets.
In Sect. 3, we propose the new ensemble of LDPC codes.
We explain overview of the structure of the proposed codes
in Sect. 3.1. We mention the concept in Sect. 3.2. We for-
mulate the average stopping set distribution for the proposed
code ensemble in Sect. 3.3. We formulate a bound on the av-
erage minimum span of stopping set for the proposed code
ensemble in Sect. 4.1 and then derive an asymptotic property
of this bound in Sect. 4.2. In Sect. 5, we describe a relation-
ship between the proposed codes and the codes obtained by
a column permutation algorithm discussed in [11]. Finally,
some example of numerically calculated and experimental
results are presented in Sect. 6 and the conclusion is given
in Sect. 7.

2. Preliminaries

2.1 LDPC Code and Tanner Graph

Let H = [Hmn], m ∈ [1,M], n ∈ [1,N], be a parity-check
∗“solid” burst erasure means that the consecutive bit positions

are all in erasures.
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matrix of an LDPC code, where M and N denote the length
of row and column, respectively†. We call the number of
element ones in each row (column) of H the weight of a row
(column). The designed rate R′ of the LDPC code is given
by R′ = 1 − M

N .
It is convenient to specify an LDPC codes by represent-

ing the Tanner graph G. Let G = (V ∪ C, E) be the Tanner
graph where V = {v1, v2, . . . , vN} and C = {c1, c2, . . . , cM},
V ∩ C = φ, are the sets of variable nodes and check nodes,
respectively, and E denotes a set of edges. A variable node
vn ∈ V corresponds to a column at position n in H and a
check node cm ∈ C corresponds to a row at position m in H.
The equality Hmn = 1 holds if the nodes vn and cm are ad-
jacent each other for an odd number edges, and the equality
Hmn = 0 holds otherwise. We call the number of edges from
a variable node (check node) the degree of variable node
(check node). The (c, d) regular Tanner graph is defined by
a graph such that the degree of each variable node is con-
stant c and the degree of each check node is d [5]. The total
number of edges in G is given by |E| = Nc = Md. In this
paper, we deal with the LDPC codes corresponding to the
regular Tanner graph as studied in [9]. Hereafter, we refer
to the regular Tanner graph as the Tanner graph for simplic-
ity.

2.2 Standard Tanner Graph Ensemble

For each variable (check) node, we assign c variable (d
check) sockets. The total number of variable (check)
sockets is therefore |E|. An ensemble†† of the Tanner
graph is obtained by choosing a permutation function π :
{1, 2, . . . , |E|} → {1, 2, . . . , |E|} with assigning uniform prob-
ability from the space of all permutations of {1, 2, . . . , |E|} →
{1, 2, . . . , |E|}. For each i = 1, 2, . . . , |E|, the variable node
associated with the ith variable socket to the check node as-
sociated with the π(i)th check socket are adjacent to each
other with the edge. Note that there may be multiple edges
which are incident to the same pair of a variable node and
a check node [5]. Let G(N, c, d) be all the collections of the
(c, d) Tanner graph G with N variable nodes.

Since a graph G which belongs to G(N, c, d) is assigned
with equal probability, the equality Pr(G) = 1/|G(N, c, d)|
holds. In this paper, we call the Tanner graph G ∈ G(N, c, d),
the standard Tanner graph.

Figure 1 shows a standard Tanner graph ensemble. The
solid circles and solid squares with the white background in-
dicate the variable nodes and check nodes, respectively. The
squares with black background indicate the variable sockets
or the check sockets. An example of multiple edges is given
in Fig. 2.

It can be easily verified thatG(N, c, d) has the following
property.

Lemma 1: [8] For G(N, c, d), we have |G(N, c, d)| = (Nc)!.
�

Fig. 1 Standard Tanner graph ensemble.

Fig. 2 An example of the multiple edges.

2.3 Stopping Set and Span of Stopping Sets

For a subset of the bit positions X ⊆ [1,N], let VX denote a
subset of the variable nodes V whose positions are indexed
by X. For a given X, let EX denote a subset of the edge set
E which is connected to VX. We define a stopping set which
is an important measure for the erasure correction by using
LDPC codes.

Definition 1 (Stopping set [3]): For a subgraph GS =

(VS ∪ T (VS ), ES ) of a graph G where S and T (VS ) denote a
subset of the bit positions and a subset of neighboring check
nodes for VS in G, respectively. We call S a stopping set if
all the check nodes in T (VS ) connect to VS with at least two
edges. �

Hereafter we consider the non-empty stopping set. Let E
denote a set of erased bit positions of a channel output (re-
ceived) sequence. If E contains some non-empty stopping
set S ⊆ E, then the received sequence with the erased bits
in E cannot be corrected by the BP decoding algorithm. Let
S(G) be all the collections of non-empty stopping sets for a
graph G. For some stopping set S ∈ S(G), we call the value
|S | stopping set weight.

Definition 2 (Consecutive bit positions): For L ∈ [1,M +
1] and n ∈ [L,N], let S n,L = {n − L + 1, n − L + 2, . . . , n}
denote a set of consecutive bit positions of length L with its
rightmost position n. �

Using Definition 2, we define a solid burst erasure.
†For two integers i and j (i ≤ j), [i, j] denotes the set of integers

from i to j.
††More precisely, an ensemble of the Tanner graph is the set of

pairs (G,Pr(G)) where Pr(G) expresses the probability of G.
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Definition 3 (Solid burst erasure): For L ∈ [1,M + 1] and
n ∈ [L,N], a solid burst erasure of length L at the set of
positions S n,L is a channel output sequence with the erased
bits only at S n,L such as E = S n,L. �

From Definitions 1 and 3, the burst erasure spanned by
S n,L cannot be corrected by the BP decoding algorithm if a
subset of S n,L is some non-empty stopping set in S(G) of
a graph G. By using this fact, we define the burst erasure
correction measure as follows:

Definition 4 (Span of stopping sets [9]): For a given
graph G, the minimum span of stopping sets μ(G) is defined
as

μ(G) = min
L∈[1,M+1], n∈[L,N]

S n,L⊇X, X∈S(G)

|S n,L|. (1)

�

In other words, μ(G) is the minimum length of uncorrectable
solid burst erasures for a given Tanner graph G ∈ G(N, c, d)
of the LDPC codes by executing the BP decoding algorithm.
In [4], Yang et al. have proposed the Lmax algorithm, which
can evaluate the maximum value of correctable length of a
solid burst erasure (the value μ(G) − 1) for a given Tanner
graph G by executing the BP decoding algorithm.

2.4 Notations

For a, 0 ≤ a ≤ 1, let H(a) be the binary entropy func-
tion defined by H(a) = −a log a − (1 − a) log(1 − a). Note
that we use the natural logarithm in this paper. For ai such
that 0 ≤ ai ≤ 1 with i = 1, 2, 3 and

∑3
i=1 ai = 1, let

H(a1, a2, a3) = −∑3
i=1 ai log ai be the ternary entropy func-

tion. The binomial coefficient and multinomial coefficient
are denoted by(

n
k

)
=

n!
(n − k)!k!

,

(
n

k0, k1, k2

)
=

n!
k0!k1!k2!

,

where k0, k1, and k2 satisfy k0+ k1+ k2 = n. Let p(x)
be a polynomial with non-negative coefficients such that
p(x) =

∑Mdeg p(x)
i=Ldeg p(x) pixi where pi denotes the coefficient of

xi, and Ldeg p(x) and Mdeg p(x) denote the smallest and
the largest index i, respectively, for which the coefficient is
nonzero. For a polynomial p(x), let coef[p(x), xi] denote the
coefficient of xi. For a condition P, the function I[P] repre-
sents the indicator function, which takes 1 if the P is true
and takes 0 otherwise.

For an asymptotic analysis, the following lemma will
be used.

Lemma 2 ([5]): For some rational number θ1 > 0, assume
p(x) such that polynomial p(x)θ1 has nonnegative coeffi-
cients. For some rational number θ2 > 0, let Ni = θ2N
be series of all index i such that θ2N is a natural number. If
Ldeg p(x)θ2 < θ1θ2 < Mdeg p(x)θ2 , then

lim
Ni→∞

1
Ni

log coef
[
p(x)Ni , xθ2Ni

]
= log

p(x0)
x0
, (2)

where x0 is the only positive solution to xp′(x)
p(x) = θ1. p′(x) is

obtained by differentiating p(x) with respect to x. �

2.5 Upper Bound on the Average Minimum Span of Stop-
ping Sets

An upper bound on the average minimum span of stopping
sets for the standard Tanner graph ensemble has been de-
rived in [9] in which a method for analysing the average
stopping set distribution† is used.

For a given graph G, let NS L,L (G) be the number of non-
empty stopping set S ∈ S(G) included in the set of consecu-
tive bit positions S L,L. Similarly for a given graph G and for
n ∈ [L+1,N], let MS n,L (G) denotes the number of non-empty
stopping set S ∈ S(G) included in the set of consecutive bit
positions S n,L with a position n which is included in S .

Lemma 3 ([9]): NS L,L (G) for L ∈ [1,M + 1] and MS n,L (G)
for n ∈ [L + 1,N] satisfy the following inequalities:

Pr[NS L,L (G) ≥ 1] =
∑

G∈G(N,c,d)

Pr(G)I[NS L,L (G) ≥ 1]

≤
{ ∑

G∈G(N,c,d)

Pr(G)NS L,L (G)
}
/1

=

L∑
w=1

(
L
w

)
W(w), (3)

Pr[MS n,L (G) ≥ 1] =
∑

G∈G(N,c,d)

Pr(G)I[MS n,L (G) ≥ 1]

≤
{ ∑

G∈G(N,c,d)

Pr(G)MS n,L (G)
}
/1

=

L∑
w=1

(
L − 1
w − 1

)
W(w), (4)

where W(w) is given by

W(w) = coef
[(

(1 + x)d − dx
)M
, xwc

]
×
(
Nc
wc

)−1

. (5)

�

By using Eqs. (3) and (4) in Lemma 3, and the bound
on the probability Pr[μ(G) ≤ L], the probability that the
minimum span of stopping sets for graph G is less than or
equal to L, can be derived. The detailed derivation method
is omitted in this paper. For details, see [9].

Theorem 1 ([9]): For L ∈ [2,M + 1], the probability
Pr[μ(G) ≤ L] such that μ(G) is less than or equal to L is
bounded by

†“Average” means “average over the ensemble.”
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Pr[μ(G) ≤ L] =
∑

G∈G(N,c,d)

Pr(G)I[μ(G) ≤ L]

≤
∑

G∈G(N,c,d)

Pr(G)
[
I
[
NS L,L (G) ≥ 1

]

+

N∑
n=L+1

I
[
MS n,L (G) ≥ 1

]]

=

L∑
w=1

{
1 +

(N − L)w
L

}(L
w

)
W(w). (6)

�

The bound derived in Theorem 1 assumes the case where
code length N is finite. In [9], the case where N is infinite
has also been derived.

3. Proposed Code Ensemble

In this section, we will explain the structure of the pro-
posed code which is obtained by concatenating the some
parity-check matrices. We mention the concept of the pro-
posed codes after explaining the structure of it. Most of the
proposed LDPC codes have good correction capabilities for
both random and burst erasures.

3.1 Code Structure

The proposed Tanner graph has three sets of variable nodes
Vi, i = 1, 2, 3, which are disjoint with each other. We call the
sets of variable nodes V1,V2, and V3 the left variable nodes,
the middle variable nodes, and the right variable nodes, re-
spectively. The proposed graph also have three sets of edges
Ei, i = 1, 2, 3, which are disjoint with each other. The set of
variable nodes Vi is adjacent to the set of check nodes C with
the edge set Ei. Let GLR = (VLR ∪ C, ELR) be the proposed
Tanner graph, where VLR and ELR denote a set of the overall
variable nodes and that of edges such that VLR =

⋃3
i=1 Vi,

VLR ∩ C = φ, and ELR =
⋃3

i=1 Ei, respectively.
Each check node of C connects to V1, V2, and V3 with

1, d−2, and 1 edges, respectively. In other words, the degree
of the check nodes C for V1,V2, and V3 are 1, d − 2, and 1,
respectively. Therefore the sum of degree of all the check
nodes is d(= 1 + (d − 2) + 1). The degrees of V1,V2, and
V3 for C are all c. Then the degrees of C for VLR and VLR

for C are d and c, respectively, and the overall graph is a
(c, d) regular Tanner graph of N variable nodes. Hence the
equations |VLR| = N and |C| = M hold. Since the degree of
V1 is c and the degree of C for V1 is 1, the number of edges
which are incident to V1 and C, or |E1|, satisfies the equation
|E1| = |V1|×c = |C|×1. Manipulating this equation, we have
|V1| = M

c =
N
d . In the same way, the cardinalities of V2 and

V3 are given by |V2| = (d−2)N
d and |V3| = N

d , respectively. We
define N1 = |V1| = |V3|, N2 = |V2|, and dj = d− j for j = 2, 3.
The sets of variable nodes are allocated in order of V1, V2,
and V3 which means that the equations V1 = {v1, v2, . . . , vN1},
V2 = {vN1+1, vN1+2, . . . , vN−N1}, and V3 = {vN−N1+1, vN−N1+2,
. . . , vN} hold. We call such (c, d) regular Tanner graph the

(c, d) left and right (LR) Tanner graph.
The parity-check matrix of the LR Tanner graph, HLR,

is represented by

HLR = [HLR,lef | HLR,mid | HLR,rig], (7)

where HLR,lef , HLR,mid, and HLR,rig are the M × N1, M × N2,
and M × N1 matrices of the row weights 1, d − 2, and 1,
respectively, and of the column weights c. Note that when
considering the regularity of the Tanner graph, the parity-
check matrix of the code may not have the regularity. Col-
umn positions of HLR,lef , HLR,mid, and HLR,rig correspond to
the positions of V1, V2, and V3, respectively.

We then define the ensemble of the LR Tanner graphs
in the same way as in Sect. 2.2. For each variable node, we
assign c variable sockets. For each check node, we assign
three types of check sockets for Vi, i = 1, 2, 3. The total
number of variable (check) sockets for Vi is therefore |Ei|.
Define K1 = 0 and Ki =

∑i−1
k=1 |Ek | for i = 2, 3. The LR Tan-

ner graph ensemble is obtained by choosing a permutation
function πi : {Ki + 1,Ki + 2, . . . ,Ki + |Ei|} → {Ki + 1,Ki +

2, . . . ,Ki + |Ei|} with assigning uniform probability from the
space of all permutations of {Ki + 1,Ki + 2, . . . ,Ki + |Ei|} →
{Ki + 1,Ki + 2, . . . ,Ki + |Ei|} for i = 1, 2, 3. For i = 1, 2, 3
and for each ji = Ki + 1,Ki + 2, . . . ,Ki + |Ei|, the variable
node associated with the jith variable socket and the check
node associated with the πi( ji)th check socket are adjacent
to each other with the edge. Note that there may be the mul-
tiple edges which are incident to the same pair of the nodes
between V2 and C. Let GLR(N, c, d) be all the collections of
the (c, d) LR Tanner graph GLR with N variable nodes.

From the above explanation, since a graph GLR which
belongs to GLR(N, c, d) is assigned with equal probability,
the equality Pr(GLR) = 1/|GLR(N, c, d)| holds.

It can be easily verified that GLR(N, c, d) has the fol-
lowing property.

Lemma 4: For GLR (N, c, d), we have |GLR (N, c, d)| =
(N1c)! ×(N2c)! ×(N1c)!. �

Figure 3 shows (a) the LR Tanner graph ensemble in
the same way as in Fig. 1, and (b) its parity-check matrix
representation. Note that we abbreviate the sockets for both
nodes in Fig. 3(a).

For some subset of bit positionsX ∈ [1,N], let GLR,X =
(VLR,X∪ T (VLR,X), ELR,X) denote a subgraph of the LR Tan-
ner graph GLR.

3.2 Concept of Proposed Code

The difference between the standard Tanner graph and the
LR Tanner graph is that the LR Tanner graph have three dis-
joint sets of variable nodes. Recall that the degree of the
check nodes which is adjacent to each of the variable node
V1 or V3 is one. These sets of variable nodes are useful for
correcting the single solid burst erasure. We mention two
reasons given by the following theorems:

Theorem 2: Assume that the single solid burst erasure at
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(a)

(b)

Fig. 3 (a) LR Tanner graph ensemble (b) The parity-check matrix of the
LR-LDPC code. Note that when considering the regularity of the Tanner
graph, the parity-check matrix of the code may not have the regularity.

the positions in S n,L which covers the positions of the left
variable nodes V1 or those of the right variable nodes V3 of
the LR Tanner graph has been occurred. If this burst era-
sure covers only V1 or V3 which means that L ≤ N1, then
it is guaranteed that this erasure of length L can always be
corrected.

Proof: S n,L does not contain any non-empty stopping
set, since the degree of all the check nodes of the subgraph
GLR,S n,L = (VLR,S n,L∪ T (VLR,S n,L ), ELR,S n,L ) is one. �

For the case where the burst erasure covers both V1 and V2

or V2 and V3, we give the following theorem by using the
idea of Theorem 2:

Theorem 3: Assume that the single solid burst erasure at
the positions S n,L which covers the positions of both V1 and
V2 or those of both V2 and V3 of the LR Tanner graph, has
occurred. Assume that this burst erasure covers V1 or V3

with L1, L1 < L, erasures and denote the set of this erased
bit positions S ′. To make the degree of all the check nodes
of the subgraph GLR,S n,L = (VLR,S n,L∪ T (VLR,S n,L ), ELR,S n,L ) at
least two, or in other words, to make S n,L a stopping set, at
least L1(= L − L1) erasures which cover V2 are needed.

Proof: From the above assumption, the degree of
all the check nodes of the subgraph GLR,S ′ = (VLR,S ′ ∪
T (VLR,S ′), ELR,S ′) are one and the number of these degree

one check nodes is L1c. To make S n,L a stopping set, the
degree of these L1c check nodes must become at least two.
Since the degree of remaining L − L1 variable nodes in V2

covered by the burst erasure at the positions S n,L are all c, at
least L1 variable nodes at positions S n,L are needed to make
S n,L a stopping set. Hence the equality L1 = L − L1 holds.

�

Note that these guarantees given by the above two theorems
are not valid for the case of the standard Tanner graphs.

3.3 Average Stopping Set Distribution for LR Tanner
Graph Ensemble

In order to derive a bound on the average minimum span of
stopping set for the LR Tanner graph ensemble, we first de-
rive the average stopping set distribution for them. In a pre-
vious study [8], bounds on the ensemble with two disjoint
sets of variable nodes have been derived. The main differ-
ence between their ensemble and our ensemble is whether
the number of disjoint subset of variable nodes is constant
or not.

Let V ′LR =
⋃3

i=1 V ′i ⊆ VLR be a subset of variable nodes
of the LR Tanner graph where V ′i ⊆ Vi for i = 1, 2, 3. As-
sume that the degree of all the check nodes in a subgraph
G′LR = (V ′LR ∪ T (V ′LR), E′LR) of the graph GLR are at least
two. Then the positions of V ′LR is a stopping set of size
w = |V ′LR| where w =

∑3
i=1 wi and wi = |V ′LR| for i = 1, 2, 3.

Let A(w1, w2, w3) be the number of stopping sets of a (c, d)
LR Tanner graph ensemble with weights wi, i = 1, 2, 3,
of the variable nodes Vi such that 0 ≤ w1, w3 ≤ N1 and
0 ≤ w2 ≤ N2. Define the function

Ww1,w2,w3 =

(
N1c
w1c

)(
N2c
w2c

)(
N1c
w3c

)
. (8)

A(w1, w2, w3) is obtained from the following lemma.

Lemma 5: The number of stopping set A(w1, w2, w3), of
(c, d) LR Tanner graph ensemble is

A(w1, w2, w3) =

(
N1
w1

)(
N2
w2

)(
N1
w3

)
Ww1,w2,w3

×
∑

c0,c1,c2

{(
M

c0, c1, c2

) (
c1

w1c − c2

)

× coef
[
Fc0,c1,c2 (x), xw2c]}, (9)

where

Fc0,c1,c2 (x) =
{
(1 + x)d2 − d2x

}c0

×
{
(1 + x)d2 − 1

}c1{
(1 + x)d2

}c2
. (10)

Once w1, w2, and w3 are given in the function Ww1,w2,w3 , c2

takes the following range:

κ0 ≤ c2 ≤ min(w1c, w3c), (11)

where κ0 takes



2770
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

κ0 =

{
0, if κ1 < 0;
κ1, otherwise,

(12)

with κ1 = (w1 +w3)c−M. Once c2 is obtained, c0 and c1 are
determined as follows:

c1 =
(w1 + w3)c

2
, c0 = M − c1 − c2. (13)

Proof: See Appendix A. �

By using Lemma 5, the total number of stopping set of
weight w, A(w), averaged over the LR Tanner graph ensem-
ble (average stopping set distribution) can be easily obtained
by summing A(w1, w2, w3) such that

∑3
i=1 wi = w.

Theorem 4: The average stopping set distribution A(w),
0 ≤ w ≤ N, of (c, d) LR Tanner graph ensemble is

A(w) =
∑
w1,w2,w3

A(w1, w2, w3), (14)

where w0, w1, and w2 take 0 ≤ w1, w3 ≤ N1 and 0 ≤ w2 ≤ N2

such that
∑3

i=1 wi = w.

Proof: It is obvious from Lemma 5. �

4. Bound on Average Minimum Span of Stopping Sets
for LR Tanner Graph Ensemble

In this section, we derive a bound on the average minimum
span of stopping sets for the LR Tanner graph ensemble in
the same way as in Sect. 2.5 and by using the method of
calculating the average stopping set distribution for the LR
Tanner graph ensemble in Sect. 3.3. The result of the bounds
where the code length N is finite is described in Sect. 4.1 and
it is infinite is described in Sect. 4.2.

4.1 Derivation of Upper Bound

First we formulate a bound on the probability Pr[NS L,L (GLR)
≥ 1] in the same way as in Lemma 3 where NS L,L (GLR) de-
note the number of non-empty stopping set S ∈ S(GLR)
contained in the set of consecutive bit positions S L,L for the
(c, d) LR Tanner graph.

The single solid burst erasure at positions S n,L covers
some sets of variable nodes Vi for i = 1, 2, 3 of the LR Tan-
ner graph. Hence the derivation method of the bound on
Pr[NS L,L (GLR) ≥ 1] depends on L. We divide the range of
the value L, L ∈ [1,M + 1], into the following four cases:

Definition 5: A bound on the probability Pr[NS L,L (GLR) ≥
1] is divided into the following four cases which depend on
the value of L:

Case 1) 1 ≤ L ≤ N1
Case 2) N1 + 1 ≤ L ≤ N − 2N1
Case 3) N − 2N1 + 1 ≤ L ≤ M
Case 4) L = M + 1 �

Then we can bound on Pr[NS L,L (GLR) ≥ 1] by the following
lemma:

Lemma 6: Pr[NS L,L (GLR) ≥ 1] is bounded by the following
equations according to the value of L:

Case 1) For 1 ≤ L ≤ N1,

Pr[NS L,L (GLR) ≥ 1]

≤
L∑
w1=1

(
L
w1

)
Ww1,0,0

× coef
[
F0,w1c,0(x), x0]. (15)

Case 2 & 3) For N1 + 1 ≤ L ≤ M,

Pr[NS L,L (GLR) ≥ 1]

≤
L∑
w=1

min(w,N1)∑
w1=max(0,b1)
b1=N1−L+w

(
N1
w1

)(
L−N1
w−w1

)
Ww1,w−w1,0

×
(

M
w1c

)

×coef
[
FM−w1c,w1c,0(x), x(w−w1)c]. (16)

Case 4) For L = M + 1,

Pr[NS L,L (GLR) ≥ 1]

≤
L∑
w=1

min(w,N1)∑
w1=max(0,b1)

b1=w−N2−L−1

1∑
w3=max(0,b2)
b2=w−N1−N2

(
N1
w1

)(
N2

w−w1−w3

)(
1
w3

)
Ww1,w−w1−w3,w3

×
∑

c0,c1,c2

{(
M

c0, c1, c2

) (
c1

w1c − c2

)

×coef
[
Fc0,c1,c2 (x), x(w−w1−w3)c]}. (17)

where c0, c1, and c2 are obtained by using Eqs. (11)–(13).

Proof: See Appendix B. �

Next we derive an upper bound on the probability
Pr[MS n,L (GLR) ≥ 1] in the same way as in Lemma 3 where
MS n,L (GLR) denotes the number of non-empty stopping set
S ∈ S(GLR) included in the set of positions S n,L with a po-
sition n which is included in S for a graph GLR. In the sim-
ilar manner as in Definition 5, the derivation method of the
bound on Pr[MS n,L (GLR) ≥ 1] depends on L and n, and each
case given in Definition 5 is divided into some number of
cases which depend on the value of n.

Definition 6: A bound on the probability Pr[MS n,L (GLR) ≥
1] is divided into the following cases which depend on the
values of L and n:

Case 1) The set of bit positions is divided into five cases
such as (a) n ∈ [L+1,N1], (b) n ∈ [N1+1,N1+L−1], (c)
n ∈ [N1 + L,N −N1], (d) n ∈ [N −N1 + 1,N −N1 + L− 1],
and (e) n ∈ [N − N1 + L,N].

Case 2) The set of bit positions is divided into three cases
such as (a) n ∈ [L+1, L+N1−1], (b) n ∈ [L+N1,N−N1],
and (c) n ∈ [N − N1 + 1,N].

Case 3) The set of bit positions is divided into three cases
such as (a) n ∈ [L + 1,N − N1], (b) n ∈ [N − N1 + 1, L +
N1 − 1], and (c) n ∈ [L + N1,N].
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Fig. 4 The range of a solid burst erasure S n,L given by Definition 6 for various values of n and L. The
shadow and filled black box indicate the burst erasure and the filled black box represents the bit position
n which is the rightmost one of S n,L. (i) For Case 1) (a)–(e) (ii) For Case 2) (a)–(c) (iii) For Case 3)
(a)–(c) (iv) For Case 4) (a).

Case 4) In case 4), there is only one case such as (a) n ∈
[L + 1,N]. �

The schematic description for each case in Definition 6 is
depicted in Fig. 4. For the various values of L and n, this fig-
ure shows the positions of the range of some burst erasures
at S n,L. The length of all the ranges is L and is represented
by the shadow and black box, where the black box indicates
the rightmost bit position n. For various values of L, we can
divide into four cases 1)–4). Moreover each case is divided
into some number of cases for various n. For example, the
Case 1) shown in Fig. 4 (i) is divided into five cases (a)–(e).

To derive a bound on the probability Pr[MS n,L (GLR) ≥
1], showing bounds for all the cases mentioned above
is needed. Only the case 2) is important to bound on
Pr[MS n,L (GLR) ≥ 1], and the other cases are meaningless to
bound on Pr[MS n,L (GLR) ≥ 1]. For the case 1), the value of L
is too small for the burst erasure correction capability of the
LDPC codes. For the case 4), since all linear block codes
cannot correct M + 1 or larger erasures, we do not need to
bound on Pr[MS n,L (GLR) ≥ 1]. For the case 3), we prove by
the following lemma.

Lemma 7: Only (c, c+1) LR Tanner graphs satisfy the case
3) in Definition 5.

Proof: From the definition of the (c, d) Tanner graphs,
the parameters c and d satisfy d > c. Noting that the
condition of the case 3) in Definition 5 is expressed as
N−2N1 < M, we have d2 < c since N−2N1 = N−2× N

d =
d2
d

and M = c
d × N. Combining d > c and d2 < c gives

d2 < c < d and we obtain d = c + 1. Therefore there exists
only one d which satisfies the above equation and we obtain
d = c + 1. �

The number of nodes in the middle variable nodes V2, d2
d ×N,

is always lower than the number of check nodes c
d ×N(= M).

Therefore (c, c+1) LR Tanner graph codes are not useful for
the burst erasures which cover all the bit positions of V2.

From the above reasons, we show the bound on
Pr[MS n,L (GLR) ≥ 1] for only the case 2) in the following
corollary.

Corollary 1: For the case 2), the probability Pr[MS n,L

(GLR) ≥ 1] is bounded by the following equations accord-
ing to the value of n:

Case 2-(a)) For n ∈ [L + 1, L + N1 − 1],
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Pr[MS n,L (GLR) ≥ 1]

≤
L∑
w=1

min(w,b2)
b2=L−(n−N1)∑
w1=max(0,b1)
b1=w−(n−N1)

(
L−(n−N1)
w1

)(
n−N1−1
w−w1−1

)
Ww1,w−w1,0

(
M
w1c

)

×coef
[
FM−w1c,w1c,0(x), x(w−w1)c]. (18)

Case 2-(b)) For n ∈ [L + N1,N − N1],

Pr[MS n,L (GLR) ≥ 1]

≤
L∑
w2=1

(
L−1
w2−1

)
W0,w2,0

× coef
[
FM,0,0(x), xw2c]. (19)

Case 2-(c)) For n ∈ [N − N1 + 1,N],

Pr[MS n,L (GLR) ≥ 1]

≤
L∑
w=1

min(w,b2)
b2=n−(N−N1)∑
w3=max(0,b1)

b1=w−L+n−(N−N1)

(
L−n+(N−N1)
w−w3

)(
n−(N−N1)−1
w3−1

)
W0,w−w3,w3

×
(

M
w3c

)
× coef

[
FM−w3c,w3c,0(x), x(w−w3)c]. (20)

�

From Eq. (6), the same argument holds for the case of LR
Tanner graph ensemble. Then we substitute GLR into G and
GLR(N, c, d) into G(N, c, d) in Eq. (6), obtaining

Pr[μ(GLR) ≤ L]

≤
∑

GLR∈GLR(N,c,d)

[
Pr(GLR)I

[{NS L,L (GLR) ≥ 1}]

+

N∑
n=L+1

I
[{MS n,L (GLR) ≥ 1}]]. (21)

Substituting Eqs. (16) and (18)–(20) to Eq. (21) by the simi-
lar way as in Theorem 1, we have the following theorem.

Theorem 5: For the case 2), the average minimum span
of stopping sets for the (c, d) LR Tanner graph ensemble is
bounded by

Pr[μ(GLR) ≤ L]

≤
L∑
w=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(N − 2N1 − L + 1)w + 1

L
×

(
L
w

)
W0,w,0

× coef
[
FM,0,0(x), xwc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ 2 ×

L∑
w=1

min(w,N1)∑
w1=1

N1−1∑
k=w1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

k−1
w1−1

)(
L−k
w−w1

)
Ww1,w−w1,0

×
(

M
w1c

)
× coef

[
FM−w1c,w1c,0(x), x(w−w1)c]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (22)

Proof: Substituting Eqs. (16), (18), (19), and (20) into
Eq. (21) gives Eq. (22). We also substitute w into w2 in
Eq. (19) and w into w3 in Eq. (20). The first term of r.h.s. of
Eq. (22) is the sum of Eq. (16) and Eq. (18) when w1 = 0.
The second term of r.h.s. of this equation is the sum of
Eq. (18) when w1 > 0 and Eqs. (19) and (20). �

4.2 Asymptotic Analysis for LR Tanner Graph Ensemble

In this section, we derive the asymptotic average value of
the minimum span of stopping sets for the LR Tanner graph
ensemble, which enables us to analyze asymptotic perfor-
mance for a solid burst erasure.

Theorem 6: For the case 2) and for a (c, d) LR-LDPC code
ensemble, the inequality

lim
N→∞

1
N

log Pr[μ(GLR) ≤ ωN] ≤ BLR(ω), (23)

holds where BLR(ω) is defined by

BLR(ω) = sup
0<α≤ω

⎡⎢⎢⎢⎢⎢⎢⎣ωH
(α
ω

)
+ sup
0≤α1≤min(α, 1d )

[
(1 − R′)

×
{

H
(
α1c

1−R′
)
−H(dα1)−d2H

(
d(α−α1)

d2

)}

+ log

⎛⎜⎜⎜⎜⎜⎝F1−R′−α1c,α1c,0(x0)

x(α−α1)c
0

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎦ , (24)

such that 2α1 ≤ α and 0 ≤ α1 ≤ 1
d . x0 is a unique positive

solution of

(1 − R′ − α1c)d2x
{
(1 + x)d3 − 1

}
(1 + x)d2 − d2x

+
α1cd2x(1 + x)d3

(1 + x)d2 − 1
= (α − α1)c. (25)

Proof: See Appendix C. �

5. Code Obtained by Column Permutation

The present authors have proposed a column permutation
algorithm for a parity-check matrix H which can improve
the performance for multiple solid burst erasures [11]. Let
H̃ denote the column permuted parity-check matrix of H.
We now make the leftmost (rightmost) position of element
one at each row of H̃ as a small (large) value as possible.
Assume that H̃ has the following form:

H̃ = [H̃lef , H̃mid, H̃rig]. (26)

where H̃lef and H̃rig are M × (N1 − r′) and M × (N1 − r′′),
0 ≤ r′, r′′ < N1, matrices. The weights of r′ (r′′) rows and
M − r′ (M − r′′) rows of these matrices are zero and one,
respectively, and the weights of all the columns of H̃ are c.

The structure of the column permuted parity-check ma-
trix H̃ given by Eq. (26) is similar to that of the LR-LDPC
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codes when r′ and r′′ take small values. The set of variable
nodes V1, V2, and V3 of the LR-LDPC codes correspond to
the set of variable nodes of H̃lef , H̃mid, and H̃rig in its Tanner
graphs, respectively. Therefore we can obtain a code hav-
ing a similar structure to the LR-LDPC codes by a column
permutation algorithm [11]†. We call this code the pseudo
LR-LDPC (PLR-LDPC) code and denote its Tanner graph
by GPLR.

6. Some Examples and Discussions

In order to show the effectiveness of the proposed Tanner
graph ensemble, we compare codes obtained by ensemble
analysis with those generated by the computer.

6.1 Numerically Calculated Examples

6.1.1 Critical Minimum Span Ratio of Stopping Sets

Tables 1 and 2 show the critical minimum span ratio of the
stopping sets ω� for the (c, d) standard Tanner graph (Stan-
dard) [9] and that for the (c, d) LR Tanner graph (LR) en-
sembles. The value ω� for LR Tanner graph ensemble is
obtained by calculating

ω� = inf
0<ω≤1−R′
BLR(ω)≥0

ω. (27)

Tables 1 and 2 show the cases where c = 3 and where
R′ = 0.5, respectively. From Table 1, ω� for the LR Tanner
graph ensembles are larger than those for the standard Tan-
ner graph ensembles in the cases of the (3, 5), (3, 6), (3, 9),
and (3, 12) Tanner graph. For the (3, 4) Tanner graph, ω�

for the LR Tanner graph ensemble is smaller than that for
the standard ones, since the code with (c, d) = (3, 4) satis-
fies d = c + 1, which is not good for the burst correction
capability as mentioned in Sect. 4.1. In Table 2, these val-
ues for the LR Tanner graphs are slightly larger than those
for the standard Tanner graphs in the case of the (2, 4) Tan-
ner graphs and these two values are the same for the (4, 8)
Tanner graphs. These values for the LR Tanner graph en-
sembles are slightly smaller than those for the standard one
in the cases of (5, 10) and (6, 12) Tanner graphs.

6.1.2 Critical Exponent of Stopping Ratio

We compare the critical exponent of stopping ratio α� for
the standard Tanner graph ensemble [7] and the LR Tanner
graph ensemble. The value α� expresses that the probability
of existence of the stopping set weight equal to or less than
α�×N goes to 0 as code length N tends to infinity. Therefore
α� is one of measures for random erasure correction capa-
bility of the Tanner graphs by the BP decoding algorithm.

For a rational number α > 0, the critical exponent of
stopping ratio α� for the LR Tanner graph ensemble can be
obtained by

α� = inf
0<α≤1−R′
A(α)≥0

α, (28)

Table 1 Critical minimum span ratio of stopping sets ω� for two Tanner
graph ensembles when c = 3.

c d R′ Standard LR
3 4 0.25 0.571 0.5
3 5 0.4 0.447 0.457
3 6 0.5 0.366 0.373
3 9 0.667 0.237 0.239
3 12 0.75 0.175 0.176

Table 2 Critical minimum span ratio of stopping sets ω� for two Tanner
graph ensembles when R′ = 0.5.

c d R′ Standard LR
2 4 0.5 0.326 0.369
3 6 0.5 0.366 0.373
4 8 0.5 0.324 0.324
5 10 0.5 0.286 0.285
6 12 0.5 0.256 0.255

Table 3 Average value (Ave.) and its standard deviations (S. Dv.) of the
minimum span of stopping sets μ(G), μ(GLR), and μ(GPLR) for the graphs
with N = 1008, c = 3, and d = 6. The number of samples for each graph is
20.

μ(G) μ(GLR) μ(GPLR)
Ave. 404.7 413.65 414.95

S. Dv. 4.28 3.92 4.80

whereA(α) is given by

A(α) = lim
N→∞

1
N

log A(αN). (29)

The values α� for both (3,6) Tanner graph ensembles are
0.018. For other pairs of parameters (c, d) in Tables 1 and 2,
we confirm that they have also the same values. This implies
that both code ensemble have the same random erasure cor-
rection capability from the view-point of critical exponent
of stopping ratio.

6.2 Experimental Results

We compare the average minimum span of stopping sets for
the Tanner graphs G, GLR, and GPLR by using the graphs
generated by the computer. We generate 20 samples for
each graph of length N = 1008, c = 3, and d = 6 by us-
ing the different seeds of random generators. We evaluate
the values of average minimum span of stopping sets μ(G),
μ(GLR), and μ(GPLR) by executing the Lmax algorithm [4],
which calculates the r.h.s. of Eq. (1). Table 3 shows these
values averaged over 20 samples where “Ave.” and “S. Dv.”
denote the average values of minimum span and its stan-
dard deviations, respectively. From this table, the values of
μ(GLR) and μ(GPLR) are slightly larger than those of μ(G).

6.3 Discussions

From Tables 1–3, the burst erasure correction capabilities
†To obtain H̃ in Eq. (26), we may only perform step (A) and

(B) of the algorithm in [11].
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for the LR Tanner graphs are larger than that for the stan-
dard Tanner graphs. By column permutation for a parity-
check matrix of the standard LDPC codes to be close to a
parity-check matrix of the LR-LDPC codes, we obtain PLR-
LDPC codes having almost the same performance for the
burst erasure correction. We have confirmed that the graphs
of the LR-LDPC codes and that of the PLR-LDPC codes
are statistically meaningful by executing the hypothesis test
for the average values compared with the graphs of the stan-
dard LDPC codes. Moreover (c, d) LR Tanner graphs with
d > c + 1 can correct almost equal or a longer solid burst
erasure than the standard ones without a degradation in per-
formance for the random erasures in Sect. 6.1.2.

From Table 3, the ratio of the average minimum span to
code length for the standard Tanner graphs μ(G)

N and LR Tan-

ner graphs μ(GLR)
N are approximately 0.401 and 0.410, respec-

tively, and they are larger than the upper bounds presented
in Tables 1 and 2. This is because we have selected the
graphs having high performance generated by the computer,
even though there exists the bad ones. The tightness of the
bounds derived in this paper depends on the Markov’s in-
equality need in Eqs. (3) and (4), and therefore there is a gap
between bounds and experiments for both Tanner graphs.

7. Conclusion and Further Works

We have proposed a new regular Tanner graph ensemble
suitable for correcting a solid burst erasure. From the nu-
merically calculated bound on the asymptotic capability for
single solid burst erasure correction, the proposed Tanner
graph ensemble are better than that of the conventional ones
for most of the parameters of the codes. From experimen-
tal results, we also show that the average minimum span of
stopping sets for the proposed ensemble is larger than that
of the conventional ones.

Though (c, d) LR Tanner graph ensembles are a sub-
class of regular ones, it is worthy noting that instead of using
the irregular Tanner graphs, we obtain a new regular Tanner
graph ensemble suitable for correcting a solid burst erasure.

For further works, analysis of the proposed codes for
multiple solid burst erasures is needed. Analysis of the LR
type irregular Tanner graphs is also remained.
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Appendix A: Proof of Lemma 5

We first derive Eq. (9) and then derive Eqs. (11)–(13).

(1) Derivation of Eq. (9)
Assume that choosing some set of variable nodes V ′LR

with arbitrary size w = |V ′LR| from the graph GLR and con-
struct its subgraph G′LR = (V ′LR ∪ T (V ′LR), E′LR). We derive
the probability that the set of bit positions of V ′LR has a stop-
ping set. For i = 1, 2, 3 such that

∑3
i=1 wi = w, recall that

A(w1, w2, w3) is the number of stopping sets of weight wi

choosing wi nodes from Vi. We first count the number of
ways of choosing wi variable nodes from the variable nodes
Vi. Then multiplying these combinations gives

D1 =

(
N1

w1

)(
N2

w2

)(
N1

w3

)
. (A· 1)

In a similar manner, we count the number of ways of choos-
ing wic edges from each set of N1c, N2c, and N1c variable
node edges in the graph GLR. Multiplying these combina-
tions gives

D2 =

(
N1c
w1c

)(
N2c
w2c

)(
N1c
w3c

)
. (A· 2)
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Dividing D1 with D2 in Eqs. (A· 1) and (A· 2) such that
D3 = D1/D2, we can obtain the probability of choosing the
subgraph G′LR from the graph GLR.

After choosing w1 variable nodes from V1 and w3 vari-
able nodes from V3, the degrees of check nodes C which are
adjacent to V1 and V3 take zero, one, or two. We define the
numbers of these check nodes as c0, c1, and c2 such that

c0 + c1 + c2 = M. (A· 3)

The derivation method of c0, c1, and c2 will be discussed in
this appendix (2). We count the ways of choosing these c0,
c1, and c2 check nodes from M check nodes as

D4 =

(
M

c0, c1, c2

)
. (A· 4)

Moreover c1 degree one check nodes are either adjacent to
V1 or V3. We count the number of way of choosing the de-
gree one check node which is adjacent to V1 (or equivalently
to V3) from c1 check nodes. There are w1c edges are incident
to V1 and to C. These edges are incident to either degree one
or degree two check nodes. Since the number of degree two
check nodes is c2, the number of degree one check nodes
which are adjacent to V1 is w1c − w2. Therefore

D5 =

(
c1

w1c − c2

)
. (A· 5)

Multiplying D4 and D5 in Eqs. (A· 4) and (A· 5) such that
D6 = D4×D5 gives the check nodes selection after choosing
w1 and w3 variable nodes.

Finally we count the number of edge connections from
C to V2 such that the degrees of all the check nodes become
zero or greater than one to satisfy a condition of the stop-
ping set. The number of these edges is w2c. By using the
following generating function

D7 = coef
[{(1 + x)d2 − d2x}c0

× {(1 + x)d2 − 1}c1 {(1 + x)d2 }c2 , xw2c], (A· 6)

to retrieve the coefficient of the term xw2c, we evaluate this
combination of edge connections.

Multiplying D6 and D7 and combining with D3, we ob-
tain Eq. (9).

(2) Derivation of Eqs. (11)–(13)
We first derive Eq. (11). From the above discussion, the

equality

c1 + 2c2 = (w1 + w3)c (A· 7)

holds between c1 and c2, since c1 + c2 check nodes are ad-
jacent to V1 or V3 with the c1 + 2c2 edges from C to V1 and
V3 or equivalently with (w1 + w3)c edges from V1 and V3 to
C. There are c2 check nodes which are adjacent to both V1

and V3 with the edges. For each check node, there are two
edges; one edge for V1 and another for V3. Since the number
of edges which are incident to V1 and to C is w1c and to V3

and to C is w3c, c2 takes at most min(w1c, w3c). The possi-
bility of the subgraph having check nodes either adjacent to

V1 or V3 is at most (w1+w3)c, but the number of check nodes
is at most M. If the inequality (w1+w3)c−M < 0 holds, and
c2 takes 0. Otherwise (w1+w3)c−M check nodes which are
adjacent to both V1 and V3, then c2 takes c2 = (w1+w3)c−M.
Therefore we obtain Eq. (11).

Substituting c2 to Eq. (A· 7), we obtain c1 in Eq. (13).
Substituting c1 and c2 to Eq. (A· 3), we obtain c0 in Eq. (13).

�

Appendix B: Proof of Lemma 6

In the similar manner as in Appendix A, assume that choos-
ing some consecutive set of the variable nodes S L,L from the
graph GLR and construct its subgraph GLR,S L,L = (VLR,S L,L

∪T (VLR,S L,L ), ELR,S L,L ). For the cases 2) and 3) where L sat-
isfies N1 ≤ L ≤ M, the single solid burst erasure at S L,L

which covers the set of variable nodes V1 and V2, and the
equality w3 = 0 is always satisfied. We first count the num-
ber of ways of choosing w1 variable nodes from V1 and
w − w1(= w2) variable nodes from V2. We then count the
overall edge selection, the number of ways of choosing w1c
edges among N1c edges and (w − w1)c edges among N2c
edges. After choosing w1 variable nodes from V1 and in
a similar manner, choosing edges from V1, the degrees of
all the check nodes C take either zero or one. Since there
are w1c degree one check nodes and other M − w1c degree
zero check nodes, the equalities c0 = M − w1c, c1 = w1c,
and c2 = 0 hold. We count the ways of choosing these c0,
c1, and c2 check nodes from M check nodes and we obtain(

M
w1c

)
. Since all c1 degree one check nodes which are adja-

cent to only V1 and are not adjacent to V3, we do not need to
count this check node selection. From the above discussion,
we obtain(

N1

w1

) (
L − N1

w − w1

) (
M
w1c

)
(
N1c
w1c

) (
N2c

(w − w1)c

) . (A· 8)

Finally, the number of ways for connecting (w − w1)c edges
which are incident to C and V2, we use the following gener-
ating function:

coef
[{

(1 + x)d2 − d2x}M−w1c

×{(1 + x)d2 − 1
}w1c
, x(w−w1)c], (A· 9)

to retrieve the coefficient of the term x(w−w1)c. The range
of the value of w1 can be easily derived from the fact 0 ≤
w1 ≤ N1 and using the hyper-geometric distribution. Mul-
tiplying Eqs. (A· 8) and (A· 9) to bound in a similar manner
as Eq. (3), we obtain Eq. (16).

By a similar argument, Eqs. (15) and (17) can also be
derived. �

Appendix C: Proof of Theorem 6

Let L = ωN, w = αN, and w1 = α1N, where ω, α, and α1

denote the rational numbers. We want to derive an upper
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bound on

lim
N→∞

1
N

log Pr[μ(GLR) ≤ ωN]. (A· 10)

We can obtain Eq. (24) from Eq. (22) by the following step.

lim
N→∞

1
N

log Pr[μ(GLR) ≤ ωN]

≤ lim
N→∞

1
N

log

⎡⎢⎢⎢⎢⎢⎢⎢⎣
ωN∑
w=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(N − 2N1 − ωN + 1)w + 1

ωN

×
(
ωN
w

)
W0,w,0

× coef
[
FM,0,0(x), xwc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+ 2

ωN∑
w=1

min(w,N1)∑
w1=1

N1−1∑
k=w1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

k−1
w1−1

)(
ωN−k
w−w1

)
Ww1,w−w1,0

×
(

M
w1c

)
× coef

[
FM−w1c,w1c,0(x), x(w−w1)c]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎦

= lim
N→∞

1
N

log(B1 + B2), (A· 11)

where B1 and B2 correspond to the first and second terms
of r.h.s. in Eq. (A· 11). Next we bound on B1 and B2 by the
following (1) and (2).

(1) Bound on B1;

B1 =

ωN∑
w=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(N − 2N1 − ωN + 1)w + 1

ωN

×
(
ωN
w

)
W0,w,0

× coef
[
FM,0,0(x), xwc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

(
N − 2N1 − ωN + 1 +

1
ωN

)

×
ωN∑
w=1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
ωN
w

)
W0,w,0

× coef
[
FM,0,0(x), xwc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
≤
{
(N − 2N1 − ωN + 1)ωN + 1

}

× max
1≤w≤ωN

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
ωN
w

)
W0,w,0

× coef
[
FM,0,0(x), xwc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
(A· 12)

(2) Bound on B2;

B2 = 2
ωN∑
w=1

min(w,N1)∑
w1=1

N1−1∑
k=w1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

k−1
w1−1

)(
ωN−k
w−w1

)
Ww1,w−w1,0

×
(

M
w1c

)
× coef

[
FM−w1c,w1c,0(x), x(w−w1)c]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 2

ωN∑
w=1

min(w,N1)∑
w1=1

⎡⎢⎢⎢⎢⎢⎢⎣coef
[
FM−w1c,w1c,0(x), x(w−w1)c]

Ww1,w−w1,0

×
(

M
w1c

) N1−1∑
k=w1

(
k − 1
w1 − 1

)(
ωN − k
w − w1

)⎤⎥⎥⎥⎥⎥⎥⎦

≤ 2
ωN∑
w=1

⎡⎢⎢⎢⎢⎢⎢⎣
(
ωN
w

) min(w,N1)∑
w1=1

(
M
w1c

)

×coef
[
FM−w1c,w1c,0(x), x(w−w1)c]

Ww1,w−w1,0

⎤⎥⎥⎥⎥⎥⎥⎦

≤ 2
ωN∑
w=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
ωN
w

)
×min(w,N1)max

1≤w1≤b3
b3=min(w,N1)

{(
M
w1c

)

× coef
[
FM−w1c,w1c,0(x), x(w−w1)c]

Ww1,w−w1,0

} ⎤⎥⎥⎥⎥⎥⎥⎦

≤ 2
ωN∑
w=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
ωN
w

)
× ωN max

1≤w1≤b3
b3=min(w,N1)

{(
M
w1c

)

× coef
[
FM−w1c,w1c,0(x), x(w−w1)c]

Ww1,w−w1,0

} ⎤⎥⎥⎥⎥⎥⎥⎥⎦

≤ 2ω2N2 max
1≤w≤ωN

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
ωN
w

)
max

1≤w1≤b3
b3=min(w,N1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

M
w1c

)
Ww1,w−w1,0

× coef
[
FM−w1c,w1c,0(x), x(w−w1)c]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (A· 13)

Substituting Eqs. (A· 12) and (A· 13) to Eq. (A· 11), we
obtain

lim
N→∞

1
N

log Pr[μ(GLR) ≤ ωN]

≤ lim
N→∞

1
N

log

⎡⎢⎢⎢⎢⎢⎢⎣
{
(N − 2N1 − ωN + 1)ωN + 1

}

× max
1≤w≤ωN

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
ωN
w

)
W0,w,0

× coef
[
FM,0,0(x), xwc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
+2ω2N2 max

1≤w≤ωN

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
ωN
w

)
max

1≤w1≤b3
b3=min(w,N1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

M
w1c

)
Ww1,w−w1,0

×coef
[
FM−w1c,w1c,0(x), x(w−w1)c]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎦

≤ lim
N→∞

1
N

log

⎡⎢⎢⎢⎢⎢⎢⎣
{
(N − 2N1 + ωN + 1)ωN + 1

}

× max
1≤w≤ωN

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(
ωN
w

)
max

0≤w1≤b3
b3=min(w,N1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

M
w1c

)
Ww1,w−w1,0



HOSOYA et al.: A COMBINED MATRIX ENSEMBLE OF LDPC CODES FOR CORRECTING A SOLID BURST ERASURE
2777

×coef
[
FM−w1c,w1c,0(x), x(w−w1)c]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎦

≤ lim
N→∞

1
N

log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
{
(N − 2N1 + ωN + 1)ωN + 1

}

× sup
0<α≤ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
ωN
αN

)
sup

0≤α1≤b3
b3=min(α, 1d )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

(1−R′)N
α1Nc

)
Wα1N,(α−α1)N,0

×coef
[
F(1−R′−α1c)N,α1Nc,0(x), x(α−α1)Nc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= lim
N→∞

1
N

log
[
(N − 2N1 + ωN + 1)ωN + 1

]

+ lim
N→∞

1
N

log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
0<α≤ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
ωN
αN

)
sup

0≤α1≤b3
b3=min(α, 1d )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

(1−R)N
α1Nc

)
Wα1 N,(α−α1)N,0

×coef
[
F(1−R′−α1c)N,α1Nc,0(x), x(α−α1)Nc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (A· 14)

The limit of the first term of the r.h.s. in Eq. (A· 14) goes to
zero as N tends to infinity.

lim
N→∞

1
N

log
[
(N − 2N1 + ωN + 1)ωN + 1

]
= 0. (A· 15)

The limit of the second term of this equation is given by

lim
N→∞

1
N

log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
0<α≤ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(
ωN
αN

)
sup

0≤α1≤b3
b3=min(α, 1d )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

(1−R′)N
α1Nc

)
Wα1N,(α−α1)N,0

×coef
[
F(1−R′−α1c)N,α1Nc,0(x), x(α−α1)Nc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= sup
0<α≤ω

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ωH
(α
ω

)
+ lim

N→∞
1
N

× log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
0≤α1≤b3

b3=min(α, 1d )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

(1−R′)N
α1Nc

)
Wα1N,(α−α1)N,0

×coef
[
F(1−R′−α1c)N,α1Nc,0(x), x(α−α1)Nc]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (A· 16)

The limit of the second term of the r.h.s. in Eq. (A· 16) is
given by

lim
N→∞

1
N

log

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ sup
0≤α1≤b3

b3=min(α, 1d )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

(1−R′)N
α1Nc

)
Wα1N,(α−α1)N,0

×coef
[
F(1−R′−α1c)N,α1Nc,0, x

(α−α1)Nc]
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= sup
0≤α1≤b3

b3=min(α, 1d )

[
(1 − R′)

{
H
(
α1c

1 − R′
)
− d2H

(
d(α − α2)

d2

)

−H(dα1)

}
+lim

N→∞
1
N

log
{
coef

[
F(1−R′−α1c)N,α1Nc,0(x),

x(α−α1)Nc]}] . (A· 17)

By using Lemma 2 [5], the limit of the second term of the
r.h.s. in Eq. (A· 17) is given

lim
N→∞

1
N

log
{
coef

[
F(1−R′−α1c)N,α1Nc,0(x), x(α−α1)Nc]}

= log
F1−R′−α1c,α1c,0(x0)

x(α−α1)c
0

, (A· 18)

where x0 is a unique positive solution of

(1 − R′ − α1c)d2x
{
(1 + x)d3 − 1

}
(1 + x)d2 − d2x

+
α1cd2x(1 + x)d3

(1 + x)d2 − 1
= (α − α1)c. (A· 19)

Substituting Eqs. (A· 15)–(A· 19) into Eq. (A· 14), we obtain
Eq. (24).

Recall that α1 obviously takes 0 ≤ α1 ≤ 1
d and 2α1 ≤ α

is satisfied since the α1N erasures occurred at V1, and then
at least (α − α1)N erasures occurred at V2 is needed to be a
stopping set. �
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