
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008
2745

PAPER Special Section on Information Theory and Its Applications

A Method for Grouping Symbol Nodes of Group Shuffled BP
Decoding Algorithm

Yoshiyuki SATO†a), Nonmember, Gou HOSOYA††, Hideki YAGI†††, Members,
and Shigeichi HIRASAWA††, Fellow

SUMMARY In this paper, we propose a method for enhancing perfor-
mance of a sequential version of the belief-propagation (BP) decoding al-
gorithm, the group shuffled BP decoding algorithm for low-density parity-
check (LDPC) codes. An improved BP decoding algorithm, called the shuf-
fled BP decoding algorithm, decodes each symbol node in serial at each
iteration. To reduce the decoding delay of the shuffled BP decoding algo-
rithm, the group shuffled BP decoding algorithm divides all symbol nodes
into several groups. In contrast to the original group shuffled BP, which au-
tomatically generates groups according to symbol positions, in this paper
we propose a method for grouping symbol nodes which generates groups
according to the structure of a Tanner graph of the codes. The proposed
method can accelerate the convergence of the group shuffled BP algorithm
and obtain a lower error rate in a small number of iterations. We show by
simulation results that the decoding performance of the proposed method is
improved compared with those of the shuffled BP decoding algorithm and
the group shuffled BP decoding algorithm.
key words: low-density parity-check code, belief propagation decoding,
shuffled BP decoding, Tanner graph, symbol nodes grouping method

1. Introduction

Low-density parity-check (LDPC) codes [1] proposed by R.
G. Gallager in 1962 have been forgotten for a long time,
and recently their performance is re-focused [2]. The belief-
propagation (BP) decoding algorithm is a well-known as it-
erative decoding algorithm of LDPC codes [1], [2]. In this
paper, we call this decoding algorithm the standard BP de-
coding algorithm. The standard BP decoding algorithm at-
tains performance near to the Shannon limit when using the
LDPC codes with a large code length [3], [4]. Moreover, its
decoding complexity is linear to the code length.

The standard BP decoding algorithm calculates a pos-
terior probability for each received symbol. This algorithm
can be regarded as a message passing algorithm on a Tan-
ner graph, and it processes all symbol nodes in parallel at
each iteration. The standard BP decoding algorithm requires
a large number of iterations to achieve high performance.
This fact indicates necessity to accelerate convergence of the
decoding algorithm, and an improved version of the stan-
dard BP decoding algorithm, the shuffled BP (SBP) decod-

Manuscript received January 25, 2008.
Manuscript revised April 21, 2008.
†The author is with the Graduate School of Creative Science

and Engineering, Waseda University, Tokyo, 169-8555 Japan.
††The authors are with the School of Creative Science and En-

gineering, Waseda University, Tokyo, 169-8555 Japan.
†††The author is with The University of Electro-Communi-

cations, Chofu-shi, 182-8585 Japan.
a) E-mail: yosiyuki@hirasa.mgmt.waseda.ac.jp

DOI: 10.1093/ietfec/e91–a.10.2745

ing algorithm has been discussed [5], [7]. The SBP decoding
algorithm processes symbol nodes in serial at each iteration,
resulting in its high performance within a less number of it-
erations. However this decoding algorithm causes a large
decoding delay due to updating messages for each symbol
node in serial. To reduce the decoding delay of the SBP
decoding algorithm, the group SBP decoding algorithm has
been devised [5], [7]. This decoding algorithm divides all
symbol nodes into several groups. It processes each group
in serial, and all symbol nodes in a same group in parallel.
Though it automatically generates groups according to the
order of symbol positions, no methods for composing each
group to accelerate the convergence of the algorithm have
been considered.

In this paper, we propose a symbol nodes grouping
method, which generates groups by taking the structure of
a given Tanner graph into account. The proposed method
can accelerate the convergence of the grouping SBP decod-
ing algorithm and improve error rates in a small number of
iterations. We show by simulation results that the decoding
performance of the proposed method is better than those of
the SBP decoding algorithm and the group SBP decoding
algorithm within a small number of iterations. Some sim-
ulation results indicate that the group SBP decoding algo-
rithm of the proposed method attains almost the same error
rates as the conventional group SBP decoding algorithm of
a greater number of groups. In general, the group SBP de-
coding algorithm attains lower error rates but causes larger
decoding delay as the number of groups increases. The pro-
posed method can decrease decoding delay due to its high
decoding performance with a small number of groups.

This paper is organized as follows. In Sect. 2, we de-
scribe LDPC codes and the standard BP decoding algo-
rithm. In Sect. 3, we briefly review the SBP and the group
SBP decoding algorithms. In Sect. 4, we propose a group-
ing method for the group SBP decoding algorithm. An
overview of the proposed method is given in Sect. 4.1. In
Sect. 4.2, we explain procedures of the proposed algorithm
in detail. Some simulation results and discussions are pre-
sented in Sect. 5, and conclusion and further works are given
in Sect. 6.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

2746
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

2. Preliminaries

2.1 LDPC Codes and Channel Model

An LDPC code is defined by a sparse parity-check matrix
H = [Hmn], where Hmn ∈ {0, 1} for m = 1, 2, · · · ,M, n =
1, 2, · · · ,N, and M and N denote the number of rows and
columns of H, respectively. Throughout this paper, we as-
sume only binary regular LDPC codes, whose parity-check
matrices H have a constant number of 1’s in each row and
that in each column. We call the number of 1’s in each row
the weight of rows and denote it by wr. Similarly, we call
the number of 1’s in each column the weight of columns and
denote it by wc.

Assume that a codeword x, xHT = 0, is transmitted
through the additive white Gaussian noise (AWGN) chan-
nel of signal to noise ratio Eb/N0, where HT denotes the
transposed matrix of H. A decoder estimates the transmit-
ted sequence from a received sequence y ∈ RN .

2.2 Standard BP Decoding Algorithm

The standard BP decoding algorithm [1], [2] simultaneously
processes all code symbols by calculating their a posterior
probability. For a received sequence y = (y1, y2, · · · , yN),
let λn, n = 1, 2, · · · ,N, be the log likelihood ratio given by

λn = log
Pr(yn|xn = 0)
Pr(yn|xn = 1)

. (1)

For a parity-check matrix H, let N(m) and M(n) be
index sets of row m and column n such that Hmn = 1, re-
spectively, i.e.,

N(m)
�
= {n : Hmn = 1}, m = 1, 2, · · · ,M, (2)

M(n)
�
= {m : Hmn = 1}, n = 1, 2, · · · ,N. (3)

[Standard BP Decoding Algorithm]
Initialization) For any (m, n) such that Hmn = 1, set z(0)

mn :=
λn. Set i := 1 and the maximum number of iteration Imax
to some constant value.

Step 1-a) For n = 1, 2, · · · ,N, perform the following hori-
zontal step.

(Horizontal step) For m ∈ M(n), calculate the following
equations:

τ(i)
mn :=

∏
n′∈N(m)\n

tanh (z(i−1)
mn′ /2), (4)

ε(i)
mn := log

1 + τ(i)
mn

1 − τ(i)
mn

. (5)

Step 1-b) For n = 1, 2, · · · ,N, perform the following verti-
cal step.

(Vertical step) For m ∈ M(n), calculate the following
equation:

z(i)
mn := λn +

∑
m′∈M(n)\m

ε(i)
m′n. (6)

Fig. 1 An example of a Tanner graph and a behavior of the standard BP
decoding algorithm when N = 6 and M = 3. Messages ε(i)mn and z(i)

mn at each
symbol node are updated in a parallel manner.

Step2) Perform the following hard decision step and stop-
ping criterion test.

(Hard decision) For 1, 2, · · · ,N, evaluate the estimated se-
quence x̂(i) = (x̂(i)

1 , x̂
(i)
2 , · · · , x̂(i)

N) at iteration i, by the fol-
lowing equation:

x̂(i)
n :=

{
0, if z(i)

n ≥ 0;
1, otherwise,

(7)

where

z(i)
n := λn +

∑
m∈M(n)

ε(i)
mn. (8)

(Stopping criterion test) If x̂(i)HT = 0 or i = Imax, then
stop the algorithm and output x̂(i) as an estimated se-
quence. Otherwise, i := i + 1 and go to step 1-a. �

The standard BP decoding algorithm can be regarded
as a message passing algorithm on a Tanner graph of a given
code [2]. The Tanner graph consists of two types of nodes
called check nodes indexed by position of rows in H, and
symbol nodes indexed by position of columns in H. A check
node cm and a symbol node sn are connected with an edge if
and only if Hmn = 1.

Example 1: Figure 1 shows an example of a Tanner graph
of N = 6 and M = 3, where H is given by the following
equation:

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (9)

In Fig. 1, c1, c2, c3 and s1, s2, · · · , s6 represent the
check nodes and symbol nodes, respectively. ε(i)

mn and z(i)
mn

are messages from a check node cm to a symbol node sn and
from sn to cm at iteration i obtained by Eq. (5) and Eq. (6),
respectively. The standard BP decoding algorithm updates
messages for each symbol node simultaneously. We call this
manner a parallel manner. �

3. Shuffled BP and Group Shuffled BP Decoding Algo-
rithms

3.1 Shuffled BP Decoding Algorithm

As mentioned in Sect. 2.2, the standard BP decoding algo-

SATO et al.: A METHOD FOR GROUPING SYMBOL NODES OF GROUP SHUFFLED BP DECODING ALGORITHM
2747

rithm updates messages for each symbol node in a paral-
lel manner, while the SBP decoding algorithm updates them
symbol by symbol. We call this manner a serial manner [5],
[7]. The SBP decoding algorithm is expected to converge
faster than that of the standard BP decoding algorithm. As
a result, the decoding performance of SBP decoding algo-
rithm is better than the standard BP decoding algorithm at
a small number of iterations. If both decoding algorithms
sufficiently iterate, the decoding performance is almost the
same [5].

Although in the standard BP decoding algorithm, the
messages ε(i)

mn are obtained by using z(i−1)
mn′ from Eqs. (4) and

(5), it would be better to calculate the messages ε(i)
mn by using

as many z(i)
mn′ as possible in stead of z(i−1)

mn′ . The SBP decoding
algorithm uses z(i)

mn′ by processing for each symbol node in a
serial manner.

[Shuffled BP Decoding Algorithm]
The initialization and the step 2 of the SBP decoding al-
gorithm are the same as those of the standard BP decoding
algorithm. The step 1 of the SBP decoding algorithm is
modified as follows:

Step1’) For n = 1, 2, · · · ,N, perform the following hori-
zontal step and vrtical step iteratively.

(Horizontal step) For m ∈ M(n), calculate the following
equations:

τ(i)
mn :=

∏
n′∈N(m)\n

n′<n

tanh (z(i)
mn′/2)

×
∏

n′∈N(m)\n
n′>n

tanh (z(i−1)
mn′ /2), (10)

ε(i)
mn := log

1 + τ(i)
mn

1 − τ(i)
mn

. (11)

(Vertical step) For m ∈ M(n), calculate the following
equation:

z(i)
mn := λn +

∑
m′∈M(n)\m

ε(i)
m′n. (12)

�

3.2 Group Shuffled BP Decoding Algorithm

The SBP decoding algorithm tends to cause a large decoding
delay due to updating messages in a serial manner. More-
over, it is difficult to implement the fully parallel structure of
the decoder in VLSI with long LDPC codes. To solve these
problems, the group SBP decoding algorithm has been de-
vised [5], [7]. To decrease the decoding delay, the group
SBP decoding algorithm divides all symbol nodes into sev-
eral groups. Updating messages for symbol nodes belong-
ing to the same group is carried out in parallel, but the pro-
cessing among groups remains in serial. When it divides all
symbol nodes into several groups for a long LDPC codes, a
parallel structure of the decoder can be feasible for the hard-
ware implementation.

Let G denote the number of groups, and assume that N

Fig. 2 An example of a behavior of the SBP decoding algorithm (G =
N) when N = 6 and M = 3. Messages ε(i)mn and z(i)

mn at each symbol node
are updated in a serial manner.

and G satisfy G|N. Let NG be the number of symbol nodes
in each group, namely NG =

N
G . Although we assume G|N

for simplicity, this condition is not essential.

[Group Shuffled BP Decoding]
The initialization and the step 2 of the group SBP decod-
ing algorithm are the same as those of the standard BP
decoding algorithm. The step 1 of the group SBP decod-
ing algorithm is modified as follows:

Step1”) For g = 1, 2, · · · ,G, perform the following hori-
zontal step and vertical step iteratively.

(Horizontal step) For (m, n) such that n = (g−1)NG+1, (g−
1)NG+2, · · · , gNG and m ∈ M(n), calculate the following
equations:

τ(i)
mn :=

∏
n′∈N(m)\n

n′≤(g−1)NG

tanh (z(i)
mn′/2)

×
∏

n′∈N(m)\n
n′≥(g−1)NG+1

tanh (z(i−1)
mn′ /2), (13)

ε(i)
mn := log

1 + τ(i)
mn

1 − τ(i)
mn

. (14)

(Vertical step) For (m, n) such that n = (g − 1)NG + 1, (g −
1)NG+2, · · · , gNG and m ∈ M(n), calculate the following
equation:

z(i)
mn := λn +

∑
m′∈M(n)\m

ε(i)
m′n. (15)

�
When G = 1 and G = N, the group SBP decoding

algorithm is reduced to the standard BP decoding and the
SBP decoding algorithms, respectively.

Example 2: Figure 2 shows an updating order of messages
in the SBP decoding algorithm with an example of a Tanner
graph of N = 6 and M = 3 where H is given by Eq. (9).
Figure 3 shows an example of an updating order of messages
in the group SBP decoding algorithm with G = 3. In Fig. 2,
ε(i)

mn and z(i)
mn are messages from a check node cm to a symbol

node sn and from sn to cm at iteration i obtained by Eqs. (11)
and (12), respectively.

The SBP decoding algorithm updates messages for
each symbol node in a serial manner. In Fig. 3, ε(i)

mn and z(i)
mn

represent messages at iteration i obtained by Eqs. (14) and
(15), respectively.

The group SBP decoding algorithm updates messages
belonging to the same group in a parallel manner, and

2748
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

Fig. 3 An example of a behavior of the group SBP decoding algorithm
(G = 3) when N = 6 and M = 3. Messages ε(i)mn and z(i)

mn in a group are
updated in a parallel manner and groups are updated in a serial manner.

groups are processed in a serial manner. Although the group
SBP decoding algorithm converges slower than the SBP de-
coding algorithm, it reduces decoding delay due to a parallel
processing in respective groups. �

4. Proposed Grouping Method

4.1 Overview of the Method

In this section, we propose a concept of systematic grouping
of symbol nodes, which has not been considered before.

In the group SBP decoding algorithm, NG symbol
nodes consisting of one group are automatically determined
according to their positions. For example, the first group
is constituted by the symbol nodes sn, n = 1, 2, · · · ,NG,
the second one is constituted by the symbol nodes sn, n =
NG +1,NG +2, · · · , 2NG, and so on. We call this method the
conventional grouping method. In order to reduce degrada-
tion in the performance of the group SBP decoding algo-
rithm, we consider an effective grouping method of symbol
nodes which utilizes the structure of a Tanner graph.

As mentioned in Sect. 3, it would be better to calcu-
late the messages ε(i)

mn by using as many z(i)
mn′ at iteration i

as possible, in stead of using z(i−1)
mn′ at iteration i − 1. Al-

though the total number of messages from symbol nodes to
check nodes are fixed, the numbers of messages z(i−1)

mn′ and
z(i)

mn′ used for calculation of ε(i)
mn can be altered according to

a way of grouping symbol nodes. From this reason, the pro-
posed method divides symbol nodes into groups so that the
messages ε(i)

mn are calculated by using as many z(i)
mn′ as possi-

ble. This approach can be realized by making symbol nodes
in the same group connect to as many check nodes as possi-
ble.

After dividing all symbol nodes into several groups by
the proposed grouping method, the group SBP decoding al-
gorithm is performed.

Example 3: An overview of the proposed grouping
method is explained with a Tanner graph in Fig. 4. For ex-
ample, Fig. 4(a) indicates that two symbol nodes sn and sn′

connecting to the same check node cm′ are not categorized
into the same group. On the other hand, Fig. 4(b) repre-
sents that two symbol nodes sn and sn′′ not connecting to

Fig. 4 (a) The case where symbol nodes sn and sn′ are not grouped, and
(b) the case where symbol nodes sn and sn′′ are grouped.

the same check node are categorized into the same group.
Since the group SBP decoding algorithm updates messages
for symbol nodes belonging to the same group in a parallel
manner, it cannot use the message z(i)

m′n when updating the
message ε(i)

m′n′ in the case of Fig. 4(a). Therefore the strategy
of the proposed grouping method is to categorize symbol
nodes which do not connect to any common check nodes in
a same group. �

4.2 Procedure of the Proposed Grouping Method

We here describe procedures of the proposed grouping
method. Recall that N and G denote the code length and
the number of groups, respectively. A set of all symbol
positions is denoted by Φ = {1, 2, · · · ,N}. Let Ag, g =
1, 2, · · · ,G, denote the set of symbol positions belonging
to a group g. The proposed grouping algorithm sequentially
divides symbol positions intoAg. A set of symbol positions
which has not been divided into any groups at some step is
denoted by Δ = Φ \⋃G

g=1Ag.
[Proposed Algorithm]
1. SetAi := ∅ for i = 1, 2, · · · ,G and g := 1.
2. Find a position k, satisfying

k = arg min
n∈Δ

∣∣∣∣ ⋃
j∈Ag
M(j) ∩M(n)

∣∣∣∣, (16)

and add k into Ag. If there exist more than one positions
satisfying Eq. (16), then choose one symbol position at
random and add it intoAg. Set Δ := Δ \ {k}.

3. If g < G, then g := g + 1 and go to 2.. Otherwise, go to
4..

4. If |Ag| < N
G , then g := 1 and go to 2.. Otherwise, stop the

algorithm. �

The step 2 aims at making symbol nodes in the same
group connect to as many check nodes as possible. It is ideal
that all of the symbol nodes in each group connect to distinct
check nodes. In other words, the ideal case is that the inside
term of the operation “arg” in Eq. (16) always satisfies the
following equation during the execution of the algorithm:

min
n∈Δ

∣∣∣∣ ⋃
j∈Ag
M(j) ∩M(n)

∣∣∣∣ = 0, for any g. (17)

SATO et al.: A METHOD FOR GROUPING SYMBOL NODES OF GROUP SHUFFLED BP DECODING ALGORITHM
2749

Fig. 5 An example of grouping results by the proposed grouping method
(G = 3) for a code of N = 6 and M = 3.

Example 4: An example of grouping the symbol nodes by
the proposed grouping method is presented in Fig. 5 by us-
ing the parity-check matrix given by Eq. (9). At first, we
suppose that the symbol positions 2, 3 and 5 are selected at
random and are divided into A1, A2, and A3, respectively.
Then we obtain A1 = {3}, A2 = {2}, and A3 = {5}, where
Δ = {1, 4, 6} and set g := 1 at the step 4. When returning
to the step 2, n = 1 and 6 satisfy Eq. (16). Then we ran-
domly choose either n = 1 or 6. In the same way, we obtain
A1 = {1, 3},A2 = {2, 6}, andA3 = {4, 5}.

From Fig. 3, since some groups have symbol nodes
connecting to the same check node, these symbol nodes
cannot use the message z(i)

mn which are updated at iteration
i. From Fig. 5, on the other hand, the proposed grouping
method divides symbol nodes, where any symbol nodes in a
group do not connect to any check nodes in common. When
performing the horizontal step for the symbol nodes in A2,
the horizontal and the vertical steps for the symbol nodes
s1 and s3 in the set of positions A1 have already been per-
formed. Therefore updating messages for the symbol nodes
in the set of positions A2 can utilize z(i)

mn. In this way, the
proposed grouping method divides symbol nodes connect-
ing to the same check nodes into different groups to use as
many z(i)

mn as possible. �

Example 5: We show effectiveness of the proposed group-
ing method by an example with a code of N = 12 and
M = 6. Figures 6(a) and (b) show a result of their Tan-
ner graphs obtained by the conventional and the proposed
grouping methods. For both methods, we set G = 4. Ta-
ble 1 shows the number of times that the group SBP decod-
ing algorithm of G = 4 uses the messages z(i−1)

mn and z(i)
mn at

one iteration for both Tanner graphs. From this table, the
number of times using the messages z(i)

mn for the proposed
grouping method is larger than that for the conventional one.
Therefore this example shows effectiveness of the proposed
grouping method for the group SBP decoding algorithm.

�

Fig. 6 (a) An example of a grouping result by the conventional grouping
method for a code of N = 12 and M = 6. (b) An example of a grouping
result by the proposed grouping method for the same code.

Table 1 The numbers of using z(i)
mn and z(i−1)

mn for the conventional group-
ing and the proposed grouping methods for a code of N = 12 and M = 6.

5. Simulation Results and Discussions

5.1 Conditions for Simulation

In order to show effectiveness of the proposed grouping
method, we show some simulation results. We compare four
decoding algorithms: the standard BP decoding algorithm
[1], [2], the SBP decoding algorithm [5], [7], the group SBP
decoding algorithm with the conventional grouping method
(G = 2, 4, 10) [5], [7], and the group SBP decoding algo-
rithm with the proposed grouping method (G = 2, 4, 10).
We use two regular LDPC codes of length N = 4000 and
N = 500 with wr = 6 and wc = 3. We transmit at most 106

codewords through the AWGN channel until 100 decoding
failure occurs.

We compare the decoding performance of the group

2750
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

Fig. 7 BER of the code with N = 4000 when Imax = 10.

Fig. 8 BER of the code with N = 4000 when Imax = 20.

SBP decoding algorithm with the conventional grouping
method and that with the proposed one. We here com-
pare (a) the decoding performance for various G, and (b)
the number of iterations for each decoding algorithm as the
decoding complexity. Finally (c), we discuss the number of
times using z(i)

mn in Eq. (13) which are massages from check
nodes at iteration i.

5.2 Simulation Results

Figures 7–9 show the bit error rate (BER) of the code
of length N = 4000 for each decoding algorithm when
Imax = 10, 20 and 60, respectively. Figure 10 shows the
BER of the code with N = 500 for each decoding algorithm
when Imax = 5. Figure 11 shows the BER of the code with
N = 4000 for several values of G when Imax = 10. Figure 12
shows the average number of iterations for each decoding
algorithm of the code with N = 4000 when Imax = 10.

Fig. 9 BER of the code with N = 4000 when Imax = 60.

Figure 13 shows the frequencies distribution on the num-
ber of iterations for each decoding algorithm when trans-
mitting 104 codewords with N = 4000, Imax = 10 and
SNR=2.2 [dB].

In Figs. 7–12, the horizontal axis represents the sig-
nal to noise ratio (SNR) [dB]. In Figs. 7–11, the vertical
axis represents the BER. In Fig. 12, the vertical axis rep-
resents the number of iterations. In Fig. 13, the horizon-
tal axis represents the number of iterations, and the vertical
axis represents the frequency on the number of iterations. In
each figure, “Conventional G” and “Proposed G” denote the
group SBP decoding algorithm grouped by the conventional
method with the number of groups G and by the proposed
method with the number of groups G, respectively.

5.3 Discussions

(a) Decoding Performance
First, from Fig. 7, the better decoding performance is

obtained as the number of groups G increases. For a fixed
G, decoding performance grouped by the proposed method
is better than that grouped by the conventional one. It should
be noted that the proposed grouping method for G = 4 and
10 achieves lower BERs than even for G = 4000 (i.e., the
SBP decoding algorithm). The decoding delay becomes
small when the value of G decreases. Therefore the pro-
posed grouping method with a small number of groups not
only enhances the decoding performance but also reduces
the decoding delay.

Second, Figs. 8 and 9 indicate that, although the pro-
posed grouping method attains lower BER than the conven-
tional one for Imax = 20 and 60, the performance differ-
ence between the proposed grouping method and the con-
ventional one becomes smaller as Imax increases. Remark
that when Imax is large and the algorithm sufficiently iter-
ates, all decoding algorithms considered here have almost
the same performance independent of the value of G [5],
[7].

SATO et al.: A METHOD FOR GROUPING SYMBOL NODES OF GROUP SHUFFLED BP DECODING ALGORITHM
2751

Fig. 10 BER of the code with N = 500 when Imax = 5.

Fig. 11 BERs for several groups G for the code with N = 4000 when
Imax = 10.

Finally, we consider the case of using the codes with
a small length. Because the convergence speed of the algo-
rithm becomes faster when the code length is small [2], we
here set Imax = 5 to examine effects within a small number
of iterations. In Fig. 10, the group SBP decoding algorithm
with the proposed grouping method (G = 2, 4, 10) gives bet-
ter performance than even for G = 500 (i.e., the SBP decod-
ing algorithm) with the code of N = 500 when Imax = 5.
The result indicates that the proposed grouping method also
has good performance for the codes with a small length.

So far, we have shown the decoding performance for
G = 2, 4, 10. In Fig. 11, we discuss the number of groups
suitable for the proposed grouping method. The BERs of
G = 20 and 50 are almost the same. Moreover the perfor-
mance difference between the proposed methods of G = 10
and 20 is quite small. These results indicate that the pro-
posed grouping method of G = 10 has appropriate perfor-

Fig. 12 Average number of iterations for the code with N = 4000 when
Imax = 10.

mance without causing large decoding delay.
(b) The Number of Decoding Operations

Since the number of operations per one iteration is the
same for all the decoding algorithms, the smaller their av-
erage number of iterations of decoding is, the smaller the
total number of operations is required. We compare the
total number of operations for each decoding algorithm in
Fig. 12 by showing the average number of iterations. From
Fig. 12, the average number of iterations becomes small as
G increases. Moreover this number for the proposed group-
ing method is smaller than that of the conventional one for
a fixed G. This implies that the total number of opera-
tions for the proposed grouping method is smaller than that
for the conventional one. Note that the gap of the average
numbers of iterations between the conventional and the pro-
posed grouping methods for a given G becomes large at high
SNRs, which is often the case in practical applications.

If we set Imax to a large value such as Imax = 60, all the
decoding algorithms almost converge and the performance
gaps become small regardless the number of groups at low
SNRs. At high SNRs, on the other hand, an overall behavior
for Imax = 60 is similar to that for Imax = 10. The reason to
this phenomenon is that, at high SNRs, all of the decoding
algorithms except for the conventional method of G = 1 tend
to converge within ten iterations. This result implies that, at
high SNRs, the proposed grouping method also works well
even for a large value of Imax.

In addition, from Fig. 13, the frequencies for G = 1 (the
standard BP decoding algorithm) distributes in a wide range
of the number of iterations. Comparing the frequencies of
the proposed method of G = 10 with those of the conven-
tional method of G = 10, those of the proposed method
come near to smaller values of iterations. Moreover, the fre-
quencies of the proposed method of G = 10 and the conven-
tional method of G = 4000 (the SBP decoding algorithm)
distribute almost equally. Therefore this result implies that
the proposed method is more effective than the conventional

2752
IEICE TRANS. FUNDAMENTALS, VOL.E91–A, NO.10 OCTOBER 2008

Fig. 13 Frequency on the number of iterations when transmitting 104

codewords with N = 4000, Imax = 10 and SNR = 2.2 [dB].

one for the same number of groups and the proposed method
of G = 10 has almost the same performance as the conven-
tional method of G = 4000.
(c) Effectiveness of Grouping

We compare the number of symbol nodes that connect
to the same check node in each group. The group SBP de-
coding algorithm cannot use many of the messages z(i)

mn at
iteration i as the number of symbol nodes connecting to the
same check node in each group increases. We here con-
sider the number of symbol nodes connecting to same check
nodes for the code of length N = 4000 in detail. When
G = 2, the number is approximately 4030–4040 in each
group for the conventional grouping method, while it is ap-
proximately 3996–3998 for the proposed one. For G = 4,
the number is approximately 1330–1400 in each group for
the conventional grouping method, while it is approximately
1000–1010 for the proposed one. For G = 10, the number is
approximately 250–290 in each group for the conventional
grouping method, while it is approximately 10–20 for the
proposed one. From these results, it is better to make the
value of G large, and G = 10 gives appropriate performance
for this code.

6. Conclusion

In this paper, we have proposed an effective grouping
method of symbol nodes for the group SBP decoding al-
gorithm. From simulation results, it has been shown that
performance of the group SBP decoding algorithm with
the proposed grouping method is better than that with the
conventional one for given G. The performance of the
group SBP decoding algorithm with the proposed grouping
method for G = 4 and 10 is even better than that of the SBP
decoding algorithm. Since the decoding delay is reduced
for small values of G, the proposed grouping method can
decrease the decoding delay and it has higher performance
than the SBP decoding algorithm. Moreover it enables to
reduce the total number of decoding operations.

For further works, we need to consider a grouping
method that is the optimal in the decoding performance. We

should also consider a method for non-uniform number of
symbol nodes in each group. There have been proposed
other types of the SBP decoding which process each check
node in a serial manner [8]. It is possible to apply a similar
method of this paper to this type of the SBP decoding algo-
rithm, and thorough investigation in such a case is also con-
sidered as a future work. Moreover, it is also further works
to consider processing each symbol node in serial for other
types of decoding algorithm such as the Min-Sum decoding
algorithm.

Acknowledgments

The authors would like to thank Associate Editor,
Prof. M. Isaka, and anonymous reviewers for their valu-
able comments. One of the authors, Y. Sato wishes to
thank Dr. M. Kobayashi at Shonan Institute of Technol-
ogy, Dr. T. Niinomi at Musashi Institute of Technology and
Dr. T. Ishida at Waseda University for their fruitful sugges-
tions.

References

[1] R.G. Gallager, Low density parity check codes, MIT Press, 1963.
[2] D.J.C. MacKay, “Good error-correcting codes based on very sparse

matrices,” IEEE Trans. Inf. Theory, vol.45, no.2, pp.399–431, March
1999.

[3] T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. The-
ory, vol.47, no.2, pp.599–618, Feb. 2001.

[4] T. Richardson and R. Urbanke, “Design of capacity-approaching ir-
regular low-density parity-check codes,” IEEE Trans. Inf. Theory,
vol.47, no.2, pp.619–637, Feb. 2001.

[5] J. Zhang and M.P.C. Fossorier, “Shuffled iterative decoding,” IEEE
Trans. Commun., vol.53, no.2, pp.209–213, Feb. 2005.

[6] Z. Chuan-Gang, Y. Jin-Sheng, L. Xue-Hong, and L. Jia-Ru, “Improve-
ment of shuffled iterative decoding,” Proc. 2006 IEEE Inf. Theory
Workshop, pp.114–116, Chengdu, China, Oct. 2006.

[7] J. Zhang, Y. Wang, M.P.C. Fossorier, and J.S. Yedidia, “Iterative de-
coding with replica,” IEEE Trans. Inf. Theory, vol.53, no.5, pp.1644–
1663, May 2007.

[8] E. Sharon, S. Litsyn, and J. Goldberger, “Efficient serial message-
passing schedules for LDPC decoding,” IEEE Trans. Inf. Theory,
vol.53, no.11, pp.4076–4091, Nov. 2007.

Yoshiyuki Sato was born in Fukuoka, Japan,
on April 15, 1983. He received the B.E. degree
in Industrial and Management Systems Engi-
neering from Waseda University, Tokyo, Japan,
in 2007. He is currently a master’s student in
Industrial and Management Systems Engineer-
ing at the Graduate School of Waseda Univer-
sity. His research interests are coding theory and
information theory.

SATO et al.: A METHOD FOR GROUPING SYMBOL NODES OF GROUP SHUFFLED BP DECODING ALGORITHM
2753

Gou Hosoya was born in Yokohama, Japan,
on Dec. 14, 1979. He received the B.E. degree
and M.E. degree in Industrial and Management
Systems Engineering from Waseda University,
Tokyo, Japan, in 2002 and 2004, respectively.
From 2008, he has been a research associate in
the Faculty of Science and Engineering, Waseda
University. His research interests are coding
theory and information theory. He is a mem-
ber of the IEEE and the Society of Information
Theory and Its Application.

Hideki Yagi was born in Yokohama, Japan,
on Oct. 14, 1975. He received the B.E. de-
gree, M.E. degree, and Dr.E. degree in Industrial
and Management Systems Engineering from
Waseda University, Tokyo, Japan, in 2001, 2003
and 2005, respectively. From 2005 to 2008, he
was with Media Network Center, Waseda Uni-
versity as a Research Associate and an Assistant
Professor. He is currently an Assistant Professor
at the University of Electro-Communications,
Tokyo, Japan. His research interests are coding

theory and information security. He is a member of the Society of Informa-
tion Theory and its Applications and IEEE.

Shigeichi Hirasawa was born in Kobe,
Japan, on Oct. 2, 1938. He received the B.S.
degree in Mathematics and the B.E. degree
in Electrical Communication Engineering from
Waseda University, Tokyo, Japan, in 1961 and
1963, respectively, and the Dr.E. degree in Elec-
trical Communication Engineering from Osaka
University, Osaka, Japan, in 1975. From 1963 to
1981, he was with the Mitsubishi Electric Cor-
poration, Hyogo, Japan. Since 1981, he has been
a professor of the School of Science and En-

gineering, Waseda University, Tokyo, Japan. In 1979, he was a Visiting
Scholar in the Computer Science Department at the University of Cali-
fornia, Los Angeles (CSD, UCLA), CA. He was a Visiting Researcher at
the Hungarian Academy of Science, Hungary, in 1985, and at the Univer-
sity of Trieste, Italy, in 1986. In 2002, he was also a Visiting Faculty at
CSD, UCLA. From 1987 to 1989, he was the Chairman of the Technical
Group on Information Theory of IEICE. He received the 1993 Achieve-
ment Award and the 1993 Kobayashi-Memorial Achievement Award from
IEICE. In 1996, he was the President of the Society of Information Theory
and Its Applications (Soc. of ITA). His research interests are information
theory and its applications, and information processing systems. He is an
IEEE Life Fellow, and a member of Soc. of ITA, the Information Process-
ing Society of Japan, and the Japan Industrial Management Association.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

