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Density Evolution Analysis of Robustness for LDPC Codes over the
Gilbert-Elliott Channel

Manabu KOBAYASHI†a), Hideki YAGI††, Toshiyasu MATSUSHIMA†††, Members,
and Shigeichi HIRASAWA††††, Fellow

SUMMARY In this paper, we analyze the robustness for low-density
parity-check (LDPC) codes over the Gilbert-Elliott (GE) channel. For this
purpose we propose a density evolution method for the case where LDPC
decoder uses the mismatched parameters for the GE channel. Using this
method, we derive the region of tuples of true parameters and mismatched
decoding parameters for the GE channel, where the decoding error proba-
bility approaches asymptotically to zero.
key words: LDPC codes, density evolution, Gilbert-Elliott channel, ro-
bustness

1. Introduction

Low-density parity-check (LDPC) codes are a class of linear
codes with very sparse parity-check matrices [1]. To ana-
lyze the performance of LDPC codes, the density-evolution
(DE) algorithm has been proposed by Richardson et al. in
[2]. This method can find the convergence behavior of
LDPC codes under message-passing decoding, assuming
very large code length. Futhermore irregular LDPC codes
exhibit the performance extremely close to the Shannon
limit for memoryless channels [3], [4].

For the Gilbert-Elliott (GE) channel or more general
Markov channels, several message-passing decoding algo-
rithms of LDPC codes have been proposed [5]–[8]. These
algorithms result in significantly improved performance for
channels with memory. Furthermore, Eckford et al. have an-
alyzed performance of LDPC codes over the GE channel us-
ing DE, under an estimation-decoding strategy, in which in-
termadiate results from the iterative decoding algorithm are
used to estimate a channel state [8]. This DE analysis pro-
vides performance thresholds which the decoder converges
to zero error probability over the GE channel. Recently,
Eckford et al. proposed a design method of irregular LDPC
codes using approximate DE for Markov channels [9]. The
best of LDPC codes designed in [9] achieves roughly 95%
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of the capacity of the corresponding GE channel.
These conventional DE algorithms assume that the re-

ceiver knows true parameters of the probability density
function (PDF) or the probability mass function (PMF) of
the channel noise. However, it is difficult for the receiver
to know true channel parameters in general. Therefore the
message-passing decoder usually uses estimated parameters
of the channel noise. When estimated channel parameters
differ from the true ones, how much does the estimation er-
ror of the channel parameters give the influence to the per-
formance threshold? If we can know this influence, it may
be possible to design an estimation method of channel pa-
rameters and the LDPC decoder.

For turbo codes over the additive white Gaussian noise
channel, Summers et al. have studied the sensitivity of de-
coder performance to misestimation of the SNR by com-
puter simulations [10]. Moreover, for periodic scalar fading
channels, Jones et al. have shown the robustness of LDPC
codes by demonstrating the efect of misestimation of the
channel parameters [11]. In previous works, however, only
memoryless channels have been studied.

In this paper, we propose a DE algorithm for the case
where the LDPC decoder uses estimated channel parameters
over the GE channel. This is an extension of the DE algo-
rithm proposed by Eckford et al. [8]. Furthermore, using the
proposed DE alogrithm, we show some regions of tuples of
true and estimated channel parameters over the GE channel,
where the decoding error probability approaches asymptot-
ically to zero. Consequently, we show that the message-
passing decoder in [8] has the robustness for LDPC codes
over the GE channel.

2. System Models and GE-LDPC Decoder [8]

In this section, we describe the channel and decoder models
(which are necessary for further discussion).

Throughout this paper, random variables will be de-
noted with upper case letters, and specific values from the
corresponding sample space with corresponding lower case
letters. We will use pX(x) to represent the PMF of a dis-
crete random variable X. Likewise, the PDF of a continuous
random variable X will be denoted as fX(x). When no con-
fusion can arise, we will let the argument of the PMF or PDF
identify the corresponding random variable, simply writing
p(x) for pX(x), f (x) for fX(x) and so on.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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Definition 1: LetC be a binary (dv, dc)-regular LDPC code†
of length n with an m × n parity-check matrix H. The kth
row of H is denoted by hk. Let hk : {0, 1}n → {0, 1} be the
indicator function for hk as follows:

hk(x) =

{
1, hk xT = 0,
0, otherwise,

(1)

where xT denotes the transpose of x. h(x) is defined as
h(x) =

∏m
k=1 hk(x). �

From this definition we have h(x) = 1 if x ∈ C, and
h(x) = 0 otherwise. Assuming that each codeword of C
is equally likely to be selected by the transmitter, we have
p(x) = h(x)/|C|, where |C| is the number of codewords of C.

Definition 2: A codeword X ∈ C is transmitted to the chan-
nel and the receiver receives a channel output Y ∈ {0, 1}n
such that

Y = X + Z, (2)

where Z ∈ {0, 1}n is a noise sequence and + denotes the
componentwise modulo-2 addition. The noise sequence Z
arises from a two-states hidden Markov process at the GE
channel. Given the state space S = {G, B} and a state se-
quence S ∈ Sn, ηs denotes the crossover probability at the
state s ∈ S, i.e. ηG = Pr(Zi = 1|S i = G) and ηB = Pr(Zi =

1|S i = B). The state transition probabilities are denoted by
g = Pr(S i+1 = G|S i = B) and b = Pr(S i+1 = B|S i = G). Let
P be the state transition matrix, i.e.,

P =

[
1 − b b
g 1 − g

]
. (3)

�

Then the PMF of the state sequence S ∈ Sn can be factored
as p(s) = p(s1)

∏n−1
j=1 p(s j+1|s j). The joint PMF of a channel

output Y, a codeword X and a state sequence S is given by

p(y, x, s) = p(y|x, s)p(s)p(x)

=
1
|C|

⎛⎜⎜⎜⎜⎜⎝
n∏

i=1

p(yi|xi, si)

⎞⎟⎟⎟⎟⎟⎠

·
⎛⎜⎜⎜⎜⎜⎜⎝p(s1)

n−1∏
j=1

p(s j+1|s j)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝

m∏
k=1

hk(x)

⎞⎟⎟⎟⎟⎟⎠ . (4)

This probabilistic model results in a factor graph formed by
connecting the LDPC factor graph and the GE Markov chain
factor graph so that edges are created to connect the ap-
propriate symbol-variable nodes and channel factor nodes.
For this factor graph, the message-passing decoder utilizing
sum-product algorithm (SPA) can effectively decode the GE
channel noise [6], [8]. This decoder will be referred to as the
GE-LDPC decoder [8]. The GE-LDPC decoder is depicted
graphically in Fig. 1.

Definition 3: For d ∈ R and y ∈ {0, 1}, let γ(d, y) be defined
as

γ(d, y) =
1
2

[
1 + φ(y) tanh

(
d
2

)]
, (5)

Fig. 1 A GE-LDPC decoder graph and the massage flow through the
Markov subgraph.

where φ(x) = (−1)x, x ∈ {0, 1}. Furthermore, let N =

diag[ηG, ηB] and

E(d, y) = N(1 − γ(d, y)) + (I − N)γ(d, y), (6)

where I is an identity matrix. �

In Fig. 1, the GE-LDPC decoder calculates the current
forward message vector A = (A1, A2)T by using the previous
forward message vector A− = (A−1 , A

−
2 )T, the channel output

Y and the extrinsic information D which is the output of
SPA. More precisely, A is calculated as

A =
PTE(D, Y)A−

uTPTE(D, Y)A−
, (7)

where, by introducing a sequence u, the denominator is a
normalization constant to satisfy that A1 + A2 = 1. The for-
ward message vector A indicates the marginal state prob-
ability estimated by using the extrinsic informations from
the start to the current time, and A1 and A2 imply the es-
timated probabilities corresponding to the state G and B at
the current time, conditioned by some received symbols, re-
spectively. Similarly, the current backward message vector
B = (B1, B2)T is calculated by using the backward message
vector B− = (B−1 , B

−
2 )T at the next time, the channel output

Y and the extrinsic information D from the SPA as follows:

B =
E(D, Y)PTB−

uTE(D, Y)PTB−
, (8)

where, by introducing a sequence u, the denominator is a
normalization constant to satisfy that B1+B2 = 1. The back-
ward message vector B indicates the marginal state proba-
bility estimated by using the extrinsic informations from the
current time to the end. Using these forward and backward
message vectors, the channel message C, which is the input
to the SPA, is calculated as

C = φ(Y) log
(A−)T(I − N)PB−

(A−)TNPB−
. (9)

The extrinsic information D is calculated by the SPA in
†Although we assume regular LDPC codes for simplicity, the

extension to irregular LDPC codes is straightforward.
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the same manner as messages from a symbol-variable node
to a parity-check node.

In this way, GE-LDPC decoder iterates the following
steps: (i) calculate the forward and the backward messages
using the channel output Y and the extrinsic information D
from the SPA, (ii) calculate the channel message C accord-
ing to (9), (iii) input the channel message C to the SPA and
(iv) calculate the extrinsic information D by using the SPA.
Eckford et al. have shown that GE-LDPC decoder is asymp-
totically optimal as the code length n → ∞ since the sub-
graphs of the GE-LDPC factor graph are cycle-free for some
fixed depth with Pr → 1 as the code length n→ ∞ [8]. Fur-
thermore, Eckford et al. have proposed a DE algorithm for
the GE-LDPC decoder with true channel parameters over
the GE channel [8].

3. DE Algorithm for GE-LDPC Decoder Using Esti-
mated Channel Parameters

Conventional DE algorithms assume that the receiver knows
true parameters of the channel noise. However, it is diffi-
cult for the receiver to know true channel parameters in gen-
eral. Therefore the message-passing decoder usually uses
estimated parameters of the channel noise. In this section,
we propose a DE algorithm over the GE channel for the
case where the GE-LDPC decoder uses estimated channel
parameters which differ from true ones.

3.1 Preliminary

Definition 4: Let θ = (g, b, ηG, ηB) be a channel parame-
ter vector for the GE channel and let the parameter space
Θ be the set of all channel parameter vectors. And let
θ̃ = (g̃, b̃, η̃G, η̃B) and θ̂ = (ĝ, b̂, η̂G, η̂B), θ̃, θ̂ ∈ Θ, denote
the true and the estimated channel parameter vector, respec-
tively. The PMFs corresponding to θ̃ and θ̂ are denoted by p̃
and p̂, respectively (e.g. p̃(Z = 1|S = s) = η̃s, p̂(Z = 1|S =
s) = η̂s, s ∈ S, p̃(S = G) = g̃/(g̃ + b̃), p̂(S = G) = ĝ/(ĝ + b̂)
and so on). In an analogous way, random variables corre-
sponding to θ̃ and θ̂ are denoted by Ã and Â, respectively.

�

Two conditions are required for the efficient applica-
tion of DE analysis: (i) the independence assumption and
(ii) the symmetry condition. As described above, the sub-
graphs of the GE-LDPC factor graph are cycle-free for some
fixed depth with Pr → 1 as the code length n → ∞ [8].
Since the subgraphs are independent of the channel param-
eter vector, the independence assumption is fulfilled. The
proof of the symmetry condition is given in the Appendix.
From the symmetry condition, we can assume that the all-
zero codeword is transmitted. Note that received vector Y is
equal to the noise vector Z from (2) in this case.

Next, an overview of this section is presented here. We
assume that the GE-LDPC decoder uses an estimated chan-
nel parameter vector θ̂. Then GE-LDPC decoder updates the
massages Â, B̂, Ĉ and D as described in the previous section.

From Â2 = 1− Â1 and B̂2 = 1− B̂1, it is sufficient to consider
the messages Â1 and B̂1. Let f (Â1), f (B̂1), f (Ĉ) and f (D)
be the PDFs of Â1, B̂1, Ĉ and D, respectively. In the DE
analysis, we want to update these PDFs from the previous
PDFs along the message passing of the decoder as follows:
(i) calculate f (Â1) from f (Â−1 ) and f (D), and likewise cal-
culate f (B̂1) from f (B̂−1 ) and f (D), (ii) calculate f (Ĉ) from
f (Â1) and f (B̂1), and (iii) calculate f (D) from f (Ĉ). Un-
fortunately, steps (i) and (ii) cannot be calculated since θ̂
differs from the true parameter vector θ̃. The detail will be
described in the following subsection. Therefore, we give up
updating f (Â1) and f (B̂1), and we introduce the joint PDFs
f (Ã1, Â1) and f (B̃1, B̂1). Then the current PDF f (Ã1, Â1) can
be calculated from the previous PDF f (Ã−1 , Â

−
1 ) and f (D).

Likewise f (B̃1, B̂1) can be calculated. As a result, we can
obtain f (Ĉ) by utilizing f (Ã1, Â1) and f (B̃1, B̂1). Thus, the
outline of the DE is as follows: (i) calculate f (Ã1, Â1) from
f (Ã−1 , Â

−
1 ) and f (D), and likewise calculate f (B̃1, B̂1) from

f (B̃−1 , B̂
−
1 ) and f (D), (ii) calculate f (Ĉ) from f (Ã1, Â1) and

f (B̃1, B̂1), and (iii) calculate f (D) from f (Ĉ).

3.2 PDFs of Forward and Backward Messages

Given a channel parameter vector θ = (g, b, ηG, ηB) ∈ Θ
and the previous foward message A−1 , which is the element
of A− = (A−1 , A

−
2 )T, the current foward message A1, which

is the element of A = (A1, A2)T, can be calculated as the
following function of θ and A−1 from (7) (see [8]):

A1 = A1(θ, A−1 ) =
NA

1 (θ) + NA
2 (θ)A−1

DA
1 (θ) + DA

2 (θ)A−1
, (10)

where

NA
1 (θ) = g(ηB + (1 − 2ηB)γ(D, Y)),

NA
2 (θ) = (1 − b)(ηG + (1 − 2ηG)γ(D, Y))

−g(ηB + (1 − 2ηB)γ(D, Y)),

DA
1 (θ) = ηB + (1 − 2ηB)γ(D, Y),

DA
2 (θ) = (ηG + (1 − 2ηG)γ(D, Y))

−ηB − (1 − 2ηB)γ(D, Y). (11)

Although A1(θ, A−1 ) depends on D and Y , we omit them for
simplicity in this paper.

Let A−1 (θ, A1) denote the inverse function for
A1(θ, A−1 ), and from (10) we have

A−1 = A−1 (θ, A1) =
DA

1 (θ)A1 − NA
1 (θ)

NA
2 (θ) − DA

2 (θ)A1
. (12)

Then the partial derivativeA−1 ′(θ, A1) =
∂A−1 (θ,A1)
∂A1

is given by

A−1 ′(θ, A1) =
DA

1 (θ)NA
2 (θ) − DA

2 (θ)NA
1 (θ)

(NA
2 (θ) − DA

2 (θ)A1)2
. (13)

Since we assume that the decoder uses an estimated
channel parameter vector θ̂, we consider to calculate the
PDF of Â1, denoted by f (Â1). To obtain the current
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PDF f (Â1) from the previous PDF f (Â−1 ), we assume that
p(S |Â−1 ) can be calculated for S ∈ S. Then we can obtain
f (Â−1 |S ) as follows:

f (â−1 |s) =
p(s|â−1 ) f (â−1 )

p(s)
. (14)

Noting that Â−1 is independent of D and Y given S , we have
f (Â−1 |S ) = f (Â−1 |S , Y,D). Since Â−1 = A−1 (θ̂, Â1) is deter-
mined by Â1 given S , Y and D, f (Â1|S , Y,D) can be ex-
pressed by f (Â−1 |S ) = f (Â−1 |S , Y,D). Using the transforma-
tion of variables, we have

f (â1|s, y, d) = f (A−1 (θ̂, â1)|s)|A−1 ′(θ̂, â1)|. (15)

Since the PMFs of Y and S are determined by true channel
parameters, marginalizing over true channel parameters and
the PDF f (D) of D from the SPA, f (Â1) is expressed as

f (â1) =
∑
s∈S

∑
y∈{0,1}

p̃(s)p̃(y|s)
∫

d
f (â1|s, y, d) f (d)dd. (16)

Therefore, if we can obtain p(S |Â−1 ), f (Â1) can be calculated
from f (Â−1 ).

If we assume that θ̂ = θ̃, we have p(S = G|â−1 ) = â−1 and
p(S = B|â−1 ) = 1 − â−1 because â−1 = ã−1 , and ã−1 implies the
probability at the state G. For the case where θ̂ � θ̃, however,
the conditional probability satisfies p(S = G|â−1 ) = ã−1 , and
ã−1 is not determined by only â−1 . Since p(S |Â−1 ) cannot be
calculated by using only Â−1 , we cannot calculate (14), (15)
and (16). Therefore, we give up updating f (Â1).

Here we introduce the joint PDF f (Ã−1 , Â
−
1 ) of Ã−1 and

Â−1 . Given this joint PDF, we will describe a method to ob-
tain the next joint PDF f (Ã1, Â1). First, from the above ar-
gument p(S |Ã−1 , Â−1 ) is given by

p(s|ã−1 , â−1 ) =

{
ã−1 , s = G,
1 − ã−1 , s = B.

(17)

Then using Bayes’ rule, we have

f (ã−1 , â
−
1 |s) = p(s|ã−1 , â−1 ) f (ã−1 , â

−
1 )/p(s). (18)

Next, we consider to obtain the conditional joint PDF
f (Ã1, Â1|S , Y,D). Given S , Y and D, Ã−1 and Â−1 are deter-
mined by Ã1 and Â1 from (12), respectively, as follows:

Ã−1 = A−1 (θ̃, Ã1), Â−1 = A−1 (θ̂, Â1). (19)

Since Ã−1 and Â−1 are conditionally independent of Y and D
given S ∈ S, note that f (Ã−1 , Â

−
1 |S , Y,D) = f (Ã−1 , Â

−
1 |S ).

Therefore, using the transformation of variables for (19),
f (Ã1, Â1|S , Y,D) can be expressed by f (Ã−1 , Â

−
1 |S ). From

(19) the Jacobian matrix J is given by

J =

[
∂Ã−1 /∂Ã1 ∂Ã−1 /∂Â1

∂Â−1 /∂Ã1 ∂Â−1 /∂Â1

]
, (20)

where ∂Â−1 /∂Ã1 = ∂Ã−1 /∂Â1 = 0. Jacobian |J| is given by

|J| = A−1 ′(θ̃, Ã1)A−1 ′(θ̂, Â1). (21)

Therefore we obtain f (Ã1, Â1|S , Y,D) as follows:

f (ã1, â1|s, y, d) = f (A−1 (θ̃, ã1),A−1 (θ̂, â1)|s)

·|A−1 ′(θ̃, ã1)A−1 ′(θ̂, â1)|. (22)

At last, marginalizing over true channel parameters and the
PDF f (D) of D from the SPA, f (Ã1, Â1) is expressed as

f (ã1, â1) =
∑
s∈S

∑
y∈{0,1}

p̃(s)p̃(y|s)

·
∫

d
f (ã1, â1|s, y, d) f (d)dd. (23)

In the sequel, we can update the current PDF f (Ã1, Â1)
from the previous PDF f (Ã−1 , Â

−
1 ) and the input PDF f (D),

according to (18), (22) and (23).
By an analogous argument, we can update the joint

PDF f (B̃1, B̂1) of the current backward message from the
joint PDF f (B̃−1 , B̂

−
1 ).

3.3 PDF of Channel Message

Next, we show a method to update the PDF f (Ĉ) of the
channel message Ĉ which is the input to the SPA.

Using Â1 and B̂1 in (9), Ĉ is calculated as (see [8])

Ĉ = φ(Y) log
N̂C

1 + N̂C
2 Â1

D̂C
1 + D̂C

2 Â1
, (24)

where

N̂C
1 = (1 − η̂B)(1 − ĝ − B̂1 + 2ĝB̂1),

N̂C
2 = (1 − η̂G)(b̂ + (1 − 2b̂)B̂1)

−(1 − η̂B)(1 − ĝ − B̂1 + 2ĝB̂1),

D̂C
1 = η̂B(1 − ĝ − B̂1 + 2ĝB̂1),

D̂C
2 = η̂G(b̂ + (1 − 2b̂)B̂1)

−η̂B(1 − ĝ − B̂1 + 2ĝB̂1). (25)

Since Ĉ is determined by Y, Â1 and B̂1 from (24), Â1 is also
determined by Y, B̂1 and Ĉ. Given Y and B̂1, Â1 can be ex-
pressed from (24) as a function of Ĉ

Â1 = AC
1 (Ĉ) =

D̂C
1 exp{φ(Y)Ĉ} − N̂C

1

N̂C
2 − D̂C

2 exp{φ(Y)Ĉ} . (26)

Its derivative is

AC
1
′(Ĉ) =

dAC
1 (Ĉ)

dĈ

=
(D̂C

1 N̂C
2 − D̂C

2 N̂C
1 ) exp{φ(Y)Ĉ}

(N̂C
2 − D̂C

2 exp{φ(Y)Ĉ})2
. (27)

Marginalizing f (Ã1, Â1|S ) which can be calculated in
the same manner as (18), we obtain f (Â1|S ) as follows:

f (â1|s) =
∫

ã1

f (ã1, â1|s)dã1. (28)
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Furthermore, since Â1 is conditionally independent of Y and
B̂1 given S ∈ S, note that f (Â1|S , Y, B̂1) = f (Â1|S ). There-
fore we have f (Ĉ|S , Y, B̂1) as follows:

f (ĉ|s, y, b̂1) = f (AC
1 (ĉ)|s)|AC

1
′(ĉ)|, (29)

by using the transformation of variables.
In the sequel, we can obtain the PDF f (Ĉ) by the

marginalization as follows:

f (ĉ) =
∑
s∈S

∑
y∈{0,1}

p̃(s)p̃(y|s)

·
∫

b̂1

∫
b̃1

f (ĉ1|s, y, b̂1) f (b̃1, b̂1|s)db̃1db̂1. (30)

3.4 DE Algorithm for GE-LDPC Decoder Using Esti-
mated Channel Parameter Vector

In this subsection, we show a DE algorithm for the case
where the GE-LDPC decoder uses the estimated channel pa-
rameter vector θ̂ which deffers from the true one θ̃.

Definition 5: Let δ(·) be the Dirac delta function and let η̃
and η̂ be the average inversion probabilities corresponding
to θ̃ and θ̂, respectively. These are given by

η̃ =
g̃η̃G + b̃η̃B

g̃ + b̃
, η̂ =

ĝη̂G + b̂η̂B

ĝ + b̂
. (31)

Furthermore let F ( f (X)) denote the Fourier transform of a
function f (X), and let F −1 denote the inverse transform of
F . lmax is the maximum iteration nunber and Perr( j) rep-
resents the probability of symbol error after jth iteration of
GE-LDPC decoding. �

The DE algorithm iterates until the iteration number exceeds
lmax or Perr( j) < ε, where ε is a small number. The DE
algorithm proceeds as follows:

1) Let j := 0, and set the initial PDFs:

f (0)
Ã1,Â1

(ã1, â1) = δ

(
ã1 − g̃

g̃ + b̃

)
δ

(
â1 − ĝ

ĝ + b̂

)
,

f (0)
B̃1,B̂1

(b̃1, b̂1) = δ(b̃1 − 1/2)δ(b̂1 − 1/2),

f (0)
Ĉ

(ĉ) = η̃δ(ĉ + log(1 − η̂)/η̂)
+ (1 − η̃)δ(ĉ − log(1 − η̂)/η̂),

f (0)
P = f (0)

Ĉ
.

2) Using the PDF f ( j)
P of the message P which is the output

of a symbol-variable node, calcurate the PDF f ( j)
Q of the

massage Q which is the output of a parity-check node [2].
Letting P1, P2, . . . , Pdc−1 be dc − 1 random variables with
the PDF f ( j)

P , we obtain the PDF f ( j)
Q by using the relation

that the message Q is calculated by

tanh(Q/2) =
dc−1∏
i=1

tanh(Pi/2). (32)

3) Using the PDF f ( j)
Q , calculate the PDF f ( j)

D of the extrinsic
information D as follows:

f ( j)
D = F −1[F ( f ( j)

Q )dv ]. (33)

4) Calculate f ( j+1)

Ã1,Â1
from f ( j)

D and f ( j)

Ã1,Â1
, according to (23).

Similarly, calculate f ( j+1)

B̃1,B̂1
from f ( j)

D and f ( j)

B̃1,B̂1
.

Calculate f ( j+1)

Ĉ
from f ( j)

Ã1,Â1
and f ( j)

B̃1,B̂1
, according to (30).

5) From f ( j+1)
Ĉ

and f ( j)
Q , update

f ( j+1)
P = F −1[F ( f ( j+1)

Ĉ
)F ( f ( j)

Q )dv−1]. (34)

6) If j ≥ lmax or the following inequality holds, stop.

Perr( j) =
∫ 0

−∞
F −1[F ( f ( j+1)

P )F ( f ( j)
Q )dv ](x)dx

< ε. (35)

Otherwise setting j := j + 1, go to 2). �

Here, we briefly describe the modifications to calculate
DE for irregular LDPC codes [8], [9]. Let λi and ρi be the
probabilities that a given edge in an LDPC subgraph is con-
nected to a symbol-variable node and check node of degree
i, respectively. Then (34) is replaced with

f ( j+1)
P = F −1

⎡⎢⎢⎢⎢⎢⎣F ( f ( j+1)

Ĉ
)
vmax∑
i=1

λiF ( f ( j)
Q )i−1

⎤⎥⎥⎥⎥⎥⎦ , (36)

where vmax represents the maximum variable degree, and
(33) is replaced with

f ( j)
D = F −1

⎡⎢⎢⎢⎢⎢⎣
vmax∑
i=1

λ̄iF ( f ( j)
Q )i

⎤⎥⎥⎥⎥⎥⎦ , (37)

where λ̄i denotes the probability that a given symbol-
variable node in an LDPC subgraph has degree i, that is,
λ̄i =

λi/i∑vmax
j=1 λ j/ j . Meanwhile, let f ( j)

Q,i represent the PDF of

a message at the output of a check node of degree i af-
ter jth iteration. In step 2), we calculate f ( j)

Q by using

f ( j)
Q =

∑cmax

i=1 ρi f ( j)
Q,i−1, where cmax represents the maximum

check degree.

4. Discussions

4.1 Relation between Conventional and Proposed DE

The conventional DE in [8] assumes that the decoder uses
the true channel parameter vector θ̃ and provides perfor-
mance thresholds which the decoder converges to zero error
probability over the GE channel. The proposed DE can an-
alyze the case where an estimated channel parameter vector
θ̂, which the decoder uses, differs from the true one.

If we set θ̂ = θ̃ in the proposed DE, the obtained thresh-
olds are the same as the results of the conventional DE. More
precisely, noting that ã1 = â1 holds for θ̂ = θ̃, we have
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f (ã1, â1)

=

{
f (ã1) =

∫
â1

f (ã1, â1)dâ1, ã1 = â1,

0, otherwise.
(38)

In this case the proposed DE results in the conventional one.
Thus our DE is an extension of the conventional one.

As described later, however, note that the computa-
tional complexity of the proposed DE is much larger than
that of conventional DE since the proposed DE needs to up-
date the joint PDF f (Ã1, Â1).

4.2 Computaional Complexity of DE

In this subsection, we discuss the computational complexity
for the proposed DE algorithm. The DE needs to calculate
the Fourier transform and the integration of some functions
iteratively. In the practical case, quantizing the continuous
random variables, it is sufficient to obtain the approximate
PDF by the discrete Fourier transform and numerical inte-
gration. Therefore we show the computational complexity
of one iteration for the DE algorithm by the order of the
number of the quantization levels.

First, we consider the steps 2), 3) and 5) of the pro-
posed DE algorithm in Sect. 3.4. These steps need the al-
most same complexity as the DE algorithm for the memory-
less channel. We assume that the random variables Ĉ, P,Q
and D are quantized by the same number of the quan-
tized levels, denoted by nP. Then the calculation of each
step, dominated by FFT processing, needs the complexity
O(nP log nP).

Next, we consider the step 4) in the proposed DE algo-
rithm. We assume that the random variables Ã1, Â1, B̃1 and
B̂1 are quantized by the same number of the quantized lev-
els, denoted by nA. The complexities to calculate the PDFs
according to (18) and (23) are O(n2

A) and O(n2
AnP), respec-

tively, since the number of f (ã1, â1) is n2
A by quantization

and each integration with respect to d needs O(nP)†.
Furthermore, we consider the complexity to calculate

the PDF f (Ĉ) according to (30). For all â1 and b̂1 we calcu-
late

f (â1|s) =
∫

ã1

f (ã1, â1|s)dã1,

f (b̂1|s) =
∫

b̃1

f (b̃1, b̂1|s)db̃1, (39)

and the total complexity is O(n2
A). Calculating these PDFs at

once, the complexity to obtain f (Ĉ) is O(nAnP) to calculate
the integration with respect to b̂1 for all ĉ.

In the sequal, the dominant complexity is O(n2
AnP) to

update f (Ã1, Â1) and f (B̃1, B̂1).
By an analogous argument, the conventional DE algo-

rithm in [8] needs the complexity O(nAnP). Therefore, com-
paring the order of the complexity for simplicity, the com-
plexity of the proposed DE is about nA times larger than that
of the conventional DE.

4.3 Case of Memoryless Channel

Although our main target is the GE channel with memory,
in this subsection we consider some memoryless channels.
In the case of the memoryless channel, f (Ĉ), which is the
PDF of channel message, is invariant under the DE since Ĉ
is the channel output. Therefore, it is sufficient to consider
only the PDF of the channel output.

[Binary Symmetric Channel (BSC)]

Let ε̃ and ε̂ be true and estimated crossover probabil-
ities of the BSC, respectively. Then an estimated channel
message is Ĉ = φ(Y) log 1−ε̂

ε̂
. Assuming all-zero codeword

X is transmitted, from Pr(Y = 0|X = 0) = 1 − ε̃, the PDF
f (Ĉ) of a channel message is

f (ĉ)= ε̃δ

(
ĉ+log

1−ε̂
ε̂

)
+(1−ε̃)δ

(
ĉ−log

1−ε̂
ε̂

)
. (40)

[Additive White Gaussian Noise (AWGN) Channel]

We assume that the symbol of a transmitted codeword
is X ∈ {+1,−1}, and let σ̃2 and σ̂2 be true and estimated vari-
ances, which are channel parameters, for the AWGN chan-
nel, respectively. Then

Pr(y|x) =
1√
2πσ̃

exp

{−(y − x)2

2σ̃2

}
, (41)

and an estimated channel message is Ĉ = 2Y/σ̂2. Therefore,
assuming the all-one codeword X is transmitted, the PDF
f (Ĉ) of a channel message is

f (ĉ) =
σ̂2

2
√

2πσ̃
exp

{−(σ̂2ĉ/2 − 1)2

2σ̃2

}
, (42)

by using the transformation of variables for (41).

5. DE Analysis of Robustness

In this section, we show the robustness for the GE-LDPC
decoder using the proposed DE algorithm. More precisely,
we show how much the estimation error of the channel pa-
rameters gives the influence to the performance thresholds
when the estimated channel parameter vector differs from
the true one.

First, we consider the region of the esimated channel
parameter vectors for the GE-LDPC decoder, where the de-
coding error probability approaches asymptotically to zero
and the true channel parameter vector is fixed.

In Fig. 2 we show such estimated parameter region for
a (3,4)-regular rate-1/4 LDPC code, where we set θ̃ = (g̃ =
0.02, b̃ = 0.02, η̃G = 0.04, η̃B = 0.37) and ĝ = b̂. In this
figure, we used lmax = 2000 and ε = 1.0−8, and we show
the upper and the lower boundaries of η̂B corresponding to

†Note that by quantization each PDF is interpreted as PMF and
integration is substituted with summation.
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Fig. 2 Decoding region for the GE-LDPC decoder with θ̂ for a (3,4)-
regular LDPC code, where θ̃ = (g̃ = 0.02, b̃ = 0.02, η̃G = 0.04, η̃B = 0.37)
is fixed and ĝ = b̂. Solid and dashed lines represent the upper and the
lower boundaries of η̂B as the decoding region, respectively. Dotted line
represents the true threshold.

Fig. 3 Decoding region for the GE-LDPC decoder with θ̂ for a (3,4)-
regular LDPC code, where θ̃ = (g̃ = 0.02, b̃ = 0.02, η̃G = 0.04, η̃B = 0.33)
is fixed and ĝ = b̂. Solid and dashed lines represent the upper and the
lower boundaries of η̂B as the decoding region, respectively. Dotted line
represents the true threshold.

η̂G such that Perr(lmax) < ε. For reference, we also show
the threshold for the case where θ̂ = θ̃ = (g̃, b̃, η̂G, η̂B). This
threshold is depicted with a dotted line in Fig. 2 and we refer
to as the true threshold. Similarly, in Fig. 3 we show the
case where θ̃ = (g̃ = 0.02, b̃ = 0.02, η̃G = 0.04, η̃B = 0.33)
is fixed and ĝ = b̂, where only η̃B is slightly smaller than the
case in Fig. 2.

Figure 2 shows that the GE-LDPC decoder using θ̂ in
a certain region can decode correctly even if θ̃ is close to
the true threshold. Furthermore, Fig. 3 shows that the de-
coding region of GE-LDPC decoder is much larger than
that for the case in Fig. 2. Therefore the decoding region
tends to expand as θ̃ gets away from the true threshold. This
can be explained by using the extrinsic information trans-
fer (EXIT) chart. Let Pe( f ) be the error probability of a

Fig. 4 The EXIT chart of the proposed DE for the cases where the tuples
(θ̃, θ̂) are set in (θ1, θ1), (θ1, θ2) and (θ3, θ3), respectively, where θ1 = (g =
0.02, b = 0.02, ηG = 0.04, ηB = 0.37), θ2 = (g = 0.01, b = 0.01, ηG =
0.03, ηB = 0.39) and θ3 = (g = 0.02, b = 0.02, ηG = 0.04, ηB = 0.376).

PDF f (X), i.e. Pe( f ) =
∫ 0

−∞ f (x)dx. Furthermore, let P be
a message from a symbol-variable node to a check node,
and let f ( j)

P (p) be the PDF of jth iteration of the proposed
DE. If the proposed DE succeeds† for some tuple (θ̃, θ̂),
we have Pe( f ( j+1)

P ) < Pe( f ( j)
P ) for all j. When Pe( f ( j)

P ) and
Pe( f ( j+1)

P ) are set in the x(horizontal)-axis and y(vertical)-
axis of an EXIT chart††, respectively, this implies that all
points of (Pe( f ( j)

P ), Pe( f ( j+1)
P )) are below the function y = x.

In Fig. 4, we show some points of (Pe( f ( j)
P ), Pe( f ( j+1)

P )) for
the cases where the tuples (θ̃, θ̂) are set in (θ1, θ1), (θ1, θ2) and
(θ3, θ3), respectively, where θ1 = (g = 0.02, b = 0.02, ηG =

0.04, ηB = 0.37), θ2 = (g = 0.01, b = 0.01, ηG = 0.03, ηB =

0.39) and θ3 = (g = 0.02, b = 0.02, ηG = 0.04, ηB = 0.376).
Some points (Pe( f ( j)

P ), Pe( f ( j+1)
P )) in Fig. 4 are selected such

that (Pe( f ( j)
P )−Pe( f ( j+1)

P ))/Pe( f ( j)
P ) are small, i.e. these points

are relatively close to the function y = x. In Fig. 4 a solid
line corresponding to (θ̃, θ̂) = (θ3, θ3) is very close to the
function y = x since θ3 is very close to the true threshold.
Therefore, in the case where θ̃ = θ3, if θ̂ is far from θ3, then
a sequence of Pe( f ( j)

P ) will converge to some positive fixed
point since a trajectory of (Pe( f ( j)

P ), Pe( f ( j+1)
P )) cannot pass

through between the function y = x and a solid line corre-
sponding to (θ̃, θ̂) = (θ3, θ3) in Fig. 4. On the other hand, a
dotted line correnponding to (θ̃, θ̂) = (θ1, θ1) is far from the
function y = x as compared with the case of (θ̃, θ̂) = (θ3, θ3).
Therefore, a dashed line corresponding to (θ̃, θ̂) = (θ1, θ2)
in Fig. 4 exists between the function y = x and a dotted
line corresponding to (θ̃, θ̂) = (θ1, θ1) although there is a
difference between θ̂(= θ2) and θ̃(= θ1). In this way, as θ̃
gets away from the true threshold, the decoding region tends
to expand. Inversely, as θ̃ gets closer to the true threshold,
more accuracy tends to be required in estimation.

Next, we consider the DE for irregular LDPC codes.

†This implies that Perr(lmax) < ε.
††This EXIT chart has been used in [12].
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Fig. 5 Decoding region for the GE-LDPC decoder with θ̂ for a (λ, ρ)-
irregular LDPC code, where θ̃ = (g̃ = 0.02, b̃ = 0.02, η̃G = 0.02, η̃B = 0.2)
is fixed and ĝ = b̂. Solid and dashed lines represent the upper and the
lower boundaries of η̂B as the decoding region, respectively. Dotted line
represents the true threshold.

Let λ(x) and ρ(x) be polynomials representing the variable
node and check node degree distributions, respectively, that
is, λ(x) =

∑vmax

i=1 λi xi−1 and ρ(x) =
∑cmax

i=1 ρi xi−1. In Fig. 5 we
show the result for a (λ, ρ)-irregular rate-1/2 LDPC code,
where we set θ̃ = (g̃ = 0.02, b̃ = 0.02, η̃G = 0.02, η̃B =

0.2) and ĝ = b̂. In Fig. 5, we used the following degree
distribution pair as in [3],

λ(x) = 0.17120x + 0.21053x2 + 0.00273x3

+ 0.00009x6 + 0.15269x7 + 0.09227x8

+ 0.02802x9 + 0.01206x14 + 0.07212x29

+ 0.25830x49, (43)

ρ(x) = 0.33620x8 + 0.08883x9 + 0.57497x10. (44)

Figure 5 shows that the decoding region is sufficiently large
for the irregular LDPC code as well as the result of Fig. 3.

These results show that an estimation error of chan-
nel parameters does not give a big influence to the decoding
performance as θ̃ goes from the true threshold, if the code
length is large enough.

Moreover the decoding regions of tuple (η̂G, η̂B) vary
according to values of ĝ(= b̂). We here discuss influence
of the sign of the estimation error ĝ − g̃. That is, if ĝ > g̃,
estimation error ĝ − g̃ is positive. In Figs. 3 and 5, if ĝ >
g̃, for small η̂G the decoding region of η̂B tends to be large
compared with the case of ĝ < g̃. As η̂G is larger for ĝ >
g̃, inversely, the decoding region of η̂B tends to be smaller
compared with the case of ĝ < g̃. This implies that the
direction of the estimation error θ̂ − θ̃ gives great influence
to the decoding performance.

In Fig. 6 we show the decoding region of (ĝ, b̂) for
a (3,4)-regular LDPC code, where θ̃ = (g̃ = 0.02, b̃ =
0.02, η̃G = 0.04, η̃B = 0.37), η̂G = 0.04 and η̂B = 0.4
are fixed. It is interesting to note that there is a large de-
coding region including the misestimation of the stationary
state probability, that is, ĝ/(ĝ + b̂) � g̃/(g̃ + b̃). Figure 6

Fig. 6 Decoding region of (ĝ, b̂) for the case where θ̃ = (g̃ = 0.02, b̃ =
0.02, η̃G = 0.04, η̃B = 0.37), η̂G = 0.04 and η̂B = 0.4 are fixed. Solid
and dashed lines represent the upper and the lower boundaries of b̂ as the
decoding region, respectively.

Fig. 7 Decoding region for the GE-LDPC decoder with θ̂ for a (3,4)-
regular LDPC code, where θ̂ = (ĝ = 0.02, b̂ = 0.02, η̂G = 0.025, η̂B = 0.36)
is fixed and g̃ = b̃. Solid lines represent the upper boundaries of η̃B as the
decoding region. Dotted lines represent the true thresholds.

also shows that the direction of the estimation error θ̂ − θ̃ is
very important since the decoding region for the case where
ĝ/(ĝ + b̂) > g̃/(g̃ + b̃) is much larger than that for the case
where ĝ/(ĝ + b̂) < g̃/(g̃ + b̃).

Next, we consider the region of the true channel pa-
rameter vectors, where the decoding error probability ap-
proaches asymptotically to zero for a fixed estimated chan-
nel parameter vector θ̂.

We set θ̂ = (ĝ = 0.02, b̂ = 0.02, η̂G = 0.025, η̂B = 0.36)
for a (3,4)-regular LDPC code, since this is the estimated
channel parameter vector such that Perr(lmax) < ε in Figs. 2
and 3. This result is presented in Fig. 7. Similarly, in Fig. 8
we show the result for a (λ, ρ)-irregular LDPC code, where
λ and ρ are given by (43) and (44), respectively. Then we set
θ̂ = (ĝ = 0.02, b̂ = 0.02, η̂G = 0.01, η̂B = 0.21) and g̃ = b̃.

Surprisingly Figs. 7 and 8 show that the decoding re-
gion of θ̃ is very large, although the decoder used a fixed θ̂.
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Furthermore there exist some decodable points near the true
threshold in these figures even when g̃ � ĝ.

Here, we consider the case of the finite code length
n since the assumption of the DE in Sect. 3.1 requires that
the code length is infinite. Experimental results for a (λ, ρ)-
irregular rate-1/2 LDPC code are presented in Fig. 9, where
λ and ρ are given by (43) and (44), respectively. In this
figure, we show the results for the following two decoders:
(i) the ideal GE-LDPC decoder which uses the true chan-
nel parameter vector θ̃, represented with dashed lines and
(ii) the estimated GE-LEPC decoder which uses the esti-
mated channel parameter vector θ̂, represented with solid
lines, where θ̂ = (ĝ = 0.02, b̂ = 0.02, η̂G = 0.01, η̂B = 0.21)
and η̃G = 0.02 are fixed. In Figs. 9(a) and (b) for ĝ ≥ g̃,
there is no big difference between the BER performance of

Fig. 8 Decoding region for the GE-LDPC decoder with θ̂ for a (λ, ρ)-
irregular LDPC code, where θ̂ = (ĝ = 0.02, b̂ = 0.02, η̂G = 0.01, η̂B = 0.21)
is fixed and g̃ = b̃. Solid lines represent the upper boundaries of η̃B as the
decoding region. Dotted lines represent the true thresholds.

Fig. 9 Experimental results for a (λ, ρ)-irregular LDPC code, where θ̂ = (ĝ = 0.02, b̂ = 0.02, η̂G =
0.01, η̂B = 0.21) and η̃G = 0.02 are fixed. Solid lines represent the results for the GE-LEPC decoder
which uses θ̂, and dashed lines represent the results for the ideal GE-LDPC decoder which uses θ̃. Dotted
lines represent the thresholds.

two decoders even when η̃B is small. These support the re-
sults of our DE analysis. In Fig. 9(c) for ĝ < g̃, however, the
estimated GE-LDPC decoder has degradation of the BER
performance compared with the ideal one. In Fig. 5, the up-
per boundary of η̂B for ĝ = 0.01 and η̂G = 0.01 is smaller
than the cases for ĝ ≥ g̃ = 0.02 and η̂G = 0.01. Thus it
seems that this degradation was caused by the direction of
the estimation error θ̂ − θ̃.

From the above results we can conclude that the GE-
LDPC decoder over the GE channel has the robustness.
These results can be used to design the channel estimater
and the frequency of the channel estimation. Furthermore it
may be possible to simplify the decoder.

6. Conclusion

In this paper, we proposed a DE algorithm for the case where
the GE-LDPC decoder uses an estimated channel parameter
vector over the GE channel. Then we introduced the joint
PDF f (Ã1, Â1) of the forward messages Ã1 and Â1 corre-
sponding to θ̃ and θ̂ for the GE-LDPC decoder and described
a method to update this joint PDF. This DE algorithm is
an extension of the DE algorithm proposed by Eckford et
al. [8]. Furthermore, using the proposed DE alogrithm, we
showed some examples of the region of the true and the es-
timated channel parameter vector achieving Perr(lmax) < ε.
Consequently, we showed that the GE-LDEPC decoder has
the robustness for LDPC codes over the GE channel and an
estimation error of channel parameters does not give a big
influence to the decoding performance asymptotically as θ̃
goes from the true threshold. It may be possible to simplify
the decoder by using the robustness.

On the other hand, the computational complexity of the
proposed DE is larger than that of the conventional DE since
the proposed DE needs to update the joint PDF f (Ã1, Â1). If
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it is possible to reduce the complexity of the proposed DE,
we can consider to analyze a Markov channel, in which the
cannel noise is characterized by a hidden Markov chain.
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Appendix: Proof of Symmetry Condition

In this appendix, we show that the symmetry condition is
fulfilled for the case where GE-LDPC decoder uses esti-
mated channel parameters. Note that the notations used in
this appendix are given in Sects. 3.2 and 3.3.

An estimated channel message Ĉ is symmetric if it can
be written as Ĉ = φ(X)T , where φ(X) = (−1)X , X is the
transmitted codeword symbol corresponding to the message
Ĉ, and T is a random variable independent of the transmitted
codeword [8].

From (2), we have φ(Y) = φ(X)φ(Z), where Y is the

received symbol, and Z is the noise symbol independent of
a codeword. From (24) and (25),

Ĉ = φ(X)φ(Z) log
N̂C

1 + N̂C
2 Â1

D̂C
1 + D̂C

2 Â1
, (A· 1)

is symmetric if Â1 and B̂1 are independent of a codeword.
Now we assume that the extrinsic information D is

symmetric and can be written as D = φ(X)U, where U is
a random variable independent of the transmitted codeword.
From tanh(−x) = − tanh(x), x ∈ R, and (5), we have

γ(D, Y) =
1
2

[
1 + φ(X)φ(Z) tanh

(
φ(X)U

2

)]

=
1
2

[
1 + φ(X)2φ(Z) tanh

(U
2

)]
= γ(U, Z). (A· 2)

Therefore, γ(D, Y)(= γ(U, Z)) is independent of the trans-
mitted codeword. In the initial step of the induction, we use
p̂(S = G) as the initial value of Â1. From (10) and (11), if Â−1
is independent of the transmitted codeword, Â1 = A1(θ̂, Â−1 )
is also independent of the transmitted codeword. Thus by
induction, we can conclude that the messages Â1 are inde-
pendent of the transmitted codeword as long as the extrinsic
informations D are symmetric. The same argument can be
used for B̂1.

At last, we need to show that if Ĉ are symmetric, D
are also symmetric. However, if channel messages to the
SPA are symmetric, all messages passed in the SPA are also
symmetric [2]. Therefore D are also symmetric.

As a result, the symmetry condition is fulfilled.
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