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Abstract— In this paper we investigate the design of low-
density parity-check (LDPC) codes for the Gilbert-Elliott
(GE) channel. In the design method proposed by Eck-
ford et al., the input probability density function (PDF)
of the extrinsic information transfer (EXIT) chart is ap-
proximated by the Gaussian distribution. However, the
generated EXIT chart is not so accurate since the PDF
of the channel messages is not Gaussian for the GE chan-
nel. Therefore, we propose two methods to get the accurate
PDFs. First method can obtain the approximate PDF's by
utilizing two density-evolution (DE) steps for the Gaussian
distribution. Second one generates the accurate EXIT chart
by executing the exact DE (EDE) with the result obtained
by first method. Consequently, we can design the good
LDPC codes by using these methods.
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1 Introduction

Low-density parity-check (LDPC) codes are a class
of linear codes with very sparse parity-check matrices
(1]. To analyze the performance of LDPC codes, the
density-evolution (DE) algorithm has been proposed
by Richardson et al. in [2]. This DE analysis pro-
vides performance thresholds which the decoder con-
verges to zero error probability. Furthermore, irregular
LDPC codes exhibit the performance extremely close
to the Shannon limit for memoryless channels [3]. S.-
Y. Chung et al. introduced an one-dimensional (1-D)
analysis of LDPC codes on additive white Gaussian
noise (AWGN) [4]. Assuming a Gaussian distribution
for messages in message-passing decoding, this method
can reduce the complexity of the design of irregular
LDPC codes. Moreover, Ardakani et al. have proposed
the design method which assumes a Gaussian distri-
bution only for messages from variable nodes to check
nodes [5]. Consequently, good irregular LDPC codes
can be designed since this method generates the accu-
rate extrinsic information transfer (EXIT) chart.

For the Gilbert-Elliott (GE) channel or more gen-
eral Markov channels, several message-passing decod-
ing algorithms of LDPC codes have been proposed.
These algorithms result in significantly improved per-
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formance for channels with memory. Furthermore, Eck-
ford et al. have analyzed performance of LDPC codes
over the GE channel using DE, under an estimation-
decoding strategy, in which intermediate results from
the iterative decoding algorithm are used to estimate a
channel state [6]. Recently, Eckford et al. proposed a
design method of irregular LDPC codes using approxi-
mate DE for Markov channels [7]. In the design method
proposed by Eckford et al, the probability density func-
tion (PDF) of the messages from variable nodes to
check nodes is approximated by the Gaussian distri-
bution. However, the generated EXIT chart is not so
accurate since the PDFs of the channel messages are
not Gaussian for the GE channel.

In this paper, we propose the method to get accu-
rate PDFs of the messages from variable nodes to check
nodes compared with the Gaussian distribution. First
method can obtain the approximate PDFs by utiliz-
ing two density-evolution (DE) steps for the Gaussian
distribution. Second one generates the accurate EXIT
chart by executing the exact DE (EDE) with the result
obtained by first method. Consequently, we can design
the good LDPC codes by using these methods.

2 Design of LDPC Codes for GE Chan-

nel
Definition 1 Let C be a binary (A(z), p(z))-irregular
LDPC code of length n, where A(z) and p(z) are de-
fined as A(z) = >_;™5* Nz’ ! and p(z) = Yo5m5* prt T,
respectively, and A; and p; are the probabilities that a
given edge in an LDPC subgraph is connected to a
variable node and check node of degree i, respectively.
A codeword X € C is transmitted to the channel
and the receiver receives a channel output Y € {0,1}"

such that

Y=XaZz, (1)

where Z € {0,1}" is a noise sequence, and @ de-
notes the componentwise modulo-2 addition. The noise
sequence Z arises from a two-states hidden Markov
process at the GE channel. Given the state space
S = {G,B} and a state sequence S € S", 5, de-
notes the crossover probability at the state s € S, i.e.,
ng = Pr(Z; =1|S; = G) and np = Pr(Z; = 1|S; = B).
The state transition probabilities are denoted by g =
PI‘(SH_l = G|SZ = B) and b = PI‘(SH_l = B|SZ = G)

O
This probabilistic model results in a factor graph formed

by connecting the GE Markov chain factor graph and
the LDPC factor graph so that edges are created to con-
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Figure 1: A GE-LDPC decoder graph and the massage
flow through the Markov subgraph.

nect the appropriate symbol-variable nodes and chan-
nel factor nodes. For this factor graph, the message-
passing decoder utilizing sum-product algorithm (SPA)
can effectively decode the GE channel noise [6]. This
decoder will be referred to as the GE-LDPC decoder
[6]. The GE-LDPC decoder is depicted graphically in
Fig.1.

Let P be a message from a variable node to a check
node, and let () be a message from a check node to a
variable node. In Fig.1, the GE-LDPC decoder calcu-
lates the check node message ) by using the incom-
ing messages from the neighbor variable nodes. Next,
the extrinsic information D is calculated by using the
check node messages from the neighbor check nodes.
Furthermore, the decoder calculates the next forward
message A;41 by using the current forward message A,
the channel output Y and the extrinsic information D
as follows:

A _ (1 - b)TGAt + gTB(l - At) (2)
= TgAt + TB(l - At) ’

where Ty = n, + v(D,Y)(1 — 21,) and v(D,Y) =
11+ ¢ )tanh (£)], ¢(Y) = (-1)Y, Y € {0,1}.
The forward message A; indicates the marginal prob-
ability of the state G estimated by using the extrinsic
information from the start to the current time. Sim-
ilarly, the current backward message B; is calculated
by using the backward message B;11 at the next time,
the channel output Y and the extrinsic information
D. The backward message B; indicates the marginal
probability of state G estimated by using the extrin-
sic information from the current time to the end. Us-
ing these forward and backward messages, the channel
log-likelihood ratio (LLR) message C is calculated as
follows:

(1 =na)UA + (1 —np)(1 = Ar)

C = ¢(V)1 :
$(Y)log nGUA, + ns(1 — Ay)

3)

where U = %. Finally, the variable mes-

sage P is calculated by using the channel message C
and the check node messages.

Next, we briefly describe the DE algorithm pro-
posed by Eckford et al. [6]. Let fp(x) and fo(z) be the

probability density functions (PDFs) corresponding to
the random variables P and @, respectively. Further-
more, let fa,(z), fB,(x), fo(z) and fp(z) be the PDFs
corresponding to A;, B, C' and D, respectively. The
DE algorithm iterates to update these PDFs from the
previous PDFs along the message-passing of the de-
coder as follows: (i) calculate fp(z) from fo(z), fo(x)
and A(z), (i) calculate fg(z) from fp(z) and p(z),
and calculate fp(z) from fo(z) and A(z), (iii) calcu-
late fa,,,(z) from fy,(z) and fp(x), and likewise cal-
culate fp,(x) from fp,, (z) and fp(z), and (iv) cal-
culate fc(x) from fa,(z) and fg,,,(x). In this algo-
rithm, we refer to the update functions of each step as
fP = FP(fC7fQ7)‘)7 fQ = FQ(fP7p)7 fD = FD(fQ7)‘)7
fa, = Fa(fa,, fp), f8, = Fe(fB.4s, fD) and fo =
Fo(fa,, [Biy. ), respectively. Hereafter, we refer to the
algorithm which iterates above steps until the error of
fp converges as an exact DE (EDE).

Recently, Eckford et al. proposed a design method
of irregular LDPC codes using approximate DE for
Markov channels [7]. For fixed fp(x) we consider the
sequence fa, f,,t = 0,1,..., such that fa,,, s =
Fa(fa, sp,fp). We assume that we can obtain the
PDF f} ;, :=limyco fa,,1p- Likewise, for fixed fo(z)
we define fp .= := limy_,o fp,,r,- Then we can ob-
tain fé?,fD = Fe(fp) == FC(f:LfD’fEJD)v and fé‘,fD is
based only on fp [7]. In this way, for various fp we cal-
culate f¢ ; , where fp are approximated by the Gaus-
sian distribution N (m,2m) with mean m and variance
2m. We refer to the design method proposed by Eck-
ford et al. as the conventional design method.

[Conventional Design Method][7]

1) (Precalculation) Let vp = {vp1,vp2,... ,VDnp } be
a set of np quantization points for the interval
(0,0.5]. For all vp; € vp, execute the following
calculations.

(a) Let m; := {erf(:_1(21/D,i)}2 and fp := N(m;,2m;).

(b) Obtain f¢,, = F&(fp).

2) (Initialization) Assume that p(z) is given. Let [ := 0.

Let A9 () be an initial variable degree sequence.

3) (EXIT chart calculation) Let vp = {vp1,vp2,...,

Vpnp } be aset of np quantization points for the in-
terval (0, pg], where pq is the average channel error
probability. For all vp; € v p, execute the following
calculations.

(a) Let m; := {e1rfc71(2upﬂ-)}2 and fp := fn.m;-

(b) Obtain fg := Fo(fp,p) and fp := Fp(fo,\V).

(c) Choose vp ; closest to P.(fp), i.e.,

vp,j = argmin,  cp,|Pe(fp) — vpl,

where for a PDF f(z),
fi;o f(z)dz.

(d) For each k = 2,3,...,0max, Obtain® ¢y (vp;) =
Pe(FP(féﬂyDy]-vavxkil))‘

k—1

P.(f) is defined as P.(f) =

1

z is equal to A(x) in the case where A\, = 1.
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Figure 2: An example factor graph of DE for GE-LDPC
decoder.

4) (Optimization) Solve the following optimization prob-
lem by linear programming?:
Maximize ) ;™% A\ /k
Subject to Y ;™% Meth(vpi) < vp; (Ywpi € vp),
A >0 (k € [2,0max)), A2 < A5 and D025 A\ =
1.
Let AtV (z) be the output of linear programming.
5) (Termination condition) If I > l,ax or Y, ™% (/\SH) —
/\g))2 < € for a small ¢, then output A+ (z) and

stop, otherwise let [ := 1+ 1, and go to step(3). O

Umax

In [7], furthermore, Eckford et al. have proposed
the reduced complexity methods compared with above
one. In this paper, we omit the description of those
methods.

3 Design Method using More Accurate

Densities

Figure 2 shows an example of the input-output re-
lation of DE for GE-LDPC decoder, where for given A
and P ]0—"ut = FP(vaFQ( };lvp)vA)'

In the conventional design method, the input PDF's

in(z) are approximated by Gaussian distribution. We
refer to this DE as semi-Gaussian approximation (SGA)
[7]. In Figures 3, 4 and 5, we show the output PDFs
f2%(z) of the EDE and the SGA, where P.(fl') =
0.0896, 0.0796 and 0.05, respectively. In these figures,
we set (g,b,1na,np) = (0.01,0.01,0.01,0.22) as param-
eters of GE channel, \(z) = 0.25z + 0.424687x> +
0.208265z° + 0.1170482'% and p(x) = z°.

Figure 5 shows that enough acculacy has been ac-
complished by the SGA in the case where P.(fi)
0.05. Meanwhile mismatches of output PDFs between
the EDE and the SGA in Figures 3 and 4 are not negli-
gible. In fact, if we execute the EDE with the variable
degree sequence optimized by the conventional design
method for the given GE channel parameters, in a lot
of cases it does not succeed [7]. Then in [7], the average
check degree is decreased until the EDE is successful.

2 A$° is an certain constant which satisfies the stability condition

3):
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Figure 3: fp"*(x) of the EDE and the SGA in the case
where P, (fp) = 0.0896.
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Figure 4: fp"*(z) of the EDE and the SGA in the case
where P, (fi2) = 0.0796.
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Figure 5: f2"*(z) of the EDE and the SGA in the case
where P, (fin) = 0.5.



In this section, we will present two design meth-
ods using more accurate densities. First method uti-
lizes Gaussian Approximation (GA), and second one
executes the EDE for the degree sequence obtained by
first method,

3.1 Iterative Density Approximation

As mentioned above, mismatches of output PDF's
between the EDE and the SGA in the high error prob-
ability region are not negligible for the degree sequence
optimization. However, if the output PDFs of the SGA
are used as the next input PDFs fi¥'(z), it may derive
more accurate output densities. More precisely, for var-
ious m we can calculate fit = Fp(fc, Fo(N(m,2m), p), \)
and fo'' = Fp(fo, Fo(fi®,p),)), where we assume

(@)

that A and p are given. This is the approximation of -10 0 10 20

input-output densities by executing DE twice. Here- z

after, we refer to this approximation as the iterative ; . fpout ;

dens{ty approximation (IDA). Figure 6: P (z) of the EDE and the IDA in the case
where P, (fp) = 0.0896.

In Figures 6 and 7, we show the output PDFs fg't(x)
of the EDE and the IDA in the case where P.(fiI') =
0.0896 and 0.0796, respectively. In these figures, the T T
parameters of GE channel, A\(z) and p(z) are the same
as those of Figures 3 and 4. From these figures, we see 0.15F
that the IDA derives very accurate densities as com-
pared with Figures 3 and 4.

Here, we show the design method to obtain the de-
gree sequence with high rate by using the IDA.

0.1f

(=)

[Design Method with IDA]

Steps 1),2) and 5) are the same as the conventional de-
sign method.

3) (EXIT chart calculation) Let vp = {vp1,vp2,...,
Vpnp} be a set of np quantization points for the 0
interval (0,po], where py is set to some constant T 0 ' 10 ' 20
larger than the average channel error probability. x

For all vp; € vp, execute the following calcula- Figure 7: f24*(z) of the EDE and the IDA in the case
tions. where P,(fi%) = 0.0796.
Let m; := {erfc™' (2vp,)}? and fp := fn.m,-
Obtain fg := Fo(fp,p) and fp := Fp(fo,\V).
Choose vp ; closest to P.(fp). sequence by the use of this method. In this subsection,
Calculate fp := Fp( fé‘,up L fos )\(l))) and let V;Dﬂ, = furthermore, we propose the design method to derive
P.(fp). 7 LDPC codes with the higher rate by the effective use
of the EDE. We then don’t use the Gaussian approxi-
mation to generate an EXIT chart at all.

Starting from A(z) obtained by design method with

0.05F

a
b
¢
d
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(e) Calculate steps (b) and (c) again.
(f) For each k = 2,3,...,Umax, Obtain Tﬂk(l/fv,i) =

* k—1
Pe(F{D(fC}VD,j fo, ") ] o the IDA, the EDE is executed. Then using true input-
4) (Optimization) Solve the following optimization prob- output PDFs of the EDE, we can generate the EXIT
lem by linear programming: charts for different variable degrees.
Maximize ) ™% \¢/k The design method using the EDE is as follows.

Subject to Y™ \ethr (vp ;) < vp,; (YWp,,i €
[L,np]), Ak > 0 (k € [2,vmax]), A2 < A and  [Design Method with EDE]

s Ak = 1. 1) (Global Initialization) Assume that p is given. Let
Let A+ () be the output of linear programming. 1:=0, and let A () := A(x) be a variable degree
a sequence obtained by the design method with the
3.2 Design Method with EDE IDA.
In previous subsection, we showed the design method 2) (EDE Initialization) Let f4 and fp be the initial PDFs
by using the IDA. We can obtain the suboptimal degree corresponding to the forward and backward state
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Figure 8: Actual convergence behavior of the EDE
compared with the predicted trajectory using the SGA
and the IDA.

probabilities, respectively. Furthermore, let fo be
an initial PDF for channel outputs and let fp := f¢

and j:=1.
3) (EXIT chart calculation by EDE)
(2) v, = P.(fp).
(b) fq := Fo(fp,p); fp := Fp(fo,\V).
(c) fo = c(fA,fB)-
(d) fa = Fa(fa, fD)7 B = Fs(fB, D)
(e) For each k£ = 2,3,...,Umax, Obtain ¢ (vp;) =
P.(Fp(fo, fq, " 1)1))

() fp == Fp(fo, fo. AV).
(e)If § > jmax or Pe(fp) < € for a small €, then go
to step (4), otherwise let j := j + 1, and go to step
(a).
4) (Optimization) Solve the following optimization prob-
lem by linear programming:
Maximize ) ;™% A\, /k
Subject to Y, \ehr(vpi) < vp; (Vi € [1,7]),
/\k Z 0 (k € [2 Umax]) )‘2
1.
Let AtV (z) be the output of linear programming.
5) (Termination condition) If | > lyax OF Zv"‘“"()\(lﬂ)
g)) < € for a small ¢, then output A+ (z) and
stop, otherwise let [ := 1+ 1, and go to step 2). O

In this method, steps 2) and 3) are almost the same
as the EDE algorithm mentioned in Section 2. If this
method is successful, a variable degree sequence ob-
tained by this method is the local optimum, since exact
values of the EDE are used to EXIT charts for different
variable degrees.

4 Results
In this section, we first discuss the effectiveness
of the design method with IDA. The variable degree

< X and Y375 A =
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sequence \(z) = 0.25x + 0.4246872% +0.2082652° +
0.1170482'° is obtained by this method when we set
(9,b,ma,n) = (0.01,0.01,0.01,0.22) as parameters of
GE channel and p(z) = 2%. Figure 8 shows the EXIT
charts obtained by using the EDE, the SGA and the
IDA in the above parameter settings, where x and y
axes imply Pe(fi'(x)) and Pe(fg"(x)), respectively®.
In this figure, we see that the EDE is successful since
all points (Pe(fit'(x)), Pe(f2*(x)) of the EDE are be-
low the function y = x. From this figure, we see that
the predicted trajectory using the IDA is more accurate
than that of the SGA. The SGA tends to be less accu-
rate in the high error probability region of fp(z), mean-
while the IDA is a good approximation of the EDE.

Next, we show the variable degree sequences ob-
tained by each design method in various parameter
settings. Hereafter, we use the parameters (g,b,n¢q)
= (0.01,0.01,0.01), and np are set to 0.15,0.22 and 0.4
in Tables 1, 2 and 3, respectively. A5 are set to the
same constant for each ¢y ax, where ¢y 1S @ maximum
degree of check node. For example, we set A3° = 0.26
for ¢pax = 7 in Table 1.

In the conventional method, the reason of p., . # 1
is that the EDE fails for the designed degree sequence
as mentioned at the beginning of section 3.

Let Reconv, Ripa and Rgpg be the code rates cor-
responding to the degree sequences obtained by the
methods using the conventional, the IDA and the EDE,
respectively. When for each method the same value of
Cmax 18 used, from these tables we see that Reony <
Ripa < Rppg except for the case of ng = 0.15 and
Cmax = 7. Therefore, the proposed methods are effec-
tive in most cases.

AS cmax gets larger, furthermore, the code rates of
the degree sequences obtained by the proposed meth-
ods tend to be higher. It is natural things in the de-
sign of irregular LDPC codes. Meanwhile, conventional
method seems to have highest code rate when cpax is
relatively small [7]. We conclude that these relations
are based on the accuracy of design methods.

At last, we discuss the reason that we cannot use the
only design method with the EDE. The two conditions
to generate the EXIT chart by using the EDE are as
follows:

(i) The EDE must be successful,
(IT) Enough points of the EXIT chart are obtained by
the EDE.

In order to utilize this method, therefore, the vari-
able degree sequence which satisfies these conditions
is needed. Using the design method with IDA to ob-
tain such variable degree sequence is very useful and
effective.

5 Conclusion

In this paper, we proposed a design method of irreg-
ular LDPC codes by using the IDA and the EDE. The
IDA which approximates the input-output densities by

3 The EXIT chart of this type has been used in [5].



Table 1: Degree Sequences with Parameters (g,b,na,ns) = (0.01,0.01,0.01,0.15).

Method | Degree sequence Rate R | R/C
Conv. [7] | A2 = 0.26, A; = 0.3984, A, = 0.2245, 5 = 0.1171; po = 0.08, p7 = 0.92 0.5771 | 0.919
Ao =0.25, A3 = 0.3683, A = 0.3718, A7 = 0.0099; p; = 0.15, pg = 0.85 0.5896 | 0.939
IDA A2 = 0.26, A\s = 0.5345, A7 = 0.2055; pr =1 0.5767 | 0.919
Ay = 0.25;, A3 = 0.4222, A\g = 0.2384, A\g = 0.0894; ps =1 0.5908 | 0.941
Ao = 0.2, A3 = 0.4220, A9 = 0.2515, A1 = 0.1265; pg = 1 0.5993 | 0.955
Ao = 0.1668, A3 = 0.4052, A5 = 0.3291, A3 = 0.0989; p1g =1 0.6055 | 0.965
EDE A2 =0.26, A3 = 0.5219, A6 = 0.2181; p; =1 0.5802 | 0.924
Ao =0.25, A3 = 0.4196, A\; = 0.139, A\s = 0.1914; pg =1 0.595 | 0.948
Ao = 0.2, A3 = 0.4206, A\g = 0.2064, Ao = 0.1730; pg =1 0.6038 | 0.962
Ao = 0.1668, A3 = 0.4058, A1; = 0.3289, A1 = 0.0957, A\17 = 0.0028; p1o =1 | 0.6074 | 0.968
Table 2: Degree Sequences with Parameters (g, b, ne,ns) = (0.01,0.01,0.01,0.22).
Method | Degree sequence Rate R | R/C
Conv. [7] | A2 = 0.25, A; = 0.3820, Ay = 0.1256, \s = 0.2415; pe = 0.13, p7 = 0.87 0.5147 | 0.945
Ao = 0.2, A3 = 0.282, Ag = 0.1948, A\g = 0.1167, A7 = 0.0253, A5 = 0.1812; 0.5196 | 0.954
P8 = 04, P9 = 0.6
Ao = 0.1668, A3 = 0.263, A\g = 0.2455, Ao = 0.0001, A4 = 0.1444, A3 = 0.1114, 0.4944 | 0.908
Aa3 = 0.0688; py = 0.76, p1o = 0.24
IDA Ay = 0.25, A3 = 0.4210, Ag = 0.0274,A19 = 0.3016; p7 =1 0.5215 | 0.958
A2 = 0.2, A3 = 0.3029, Ag = 0.0273, A9 = 0.2294, A33 = 0.0857, A34 = 0.1547; 0.5312 | 0.976
p =1
Ao = 0.1668, A3 = 0.2946, Ag = 0.1031, A1p = 0.1391, Ao9 = 0.0671, \g9 = 0.0807, 0.5325 | 0.978
/\50 = 01486, P10 = 1
EDE Ay = 0.25, A3 = 0.4259, Ag = 0.0344,119 = 0.2897; pr =1 0.5234 | 0.961
Ao = 0.2, A3 = 0.3052, A\g = 0.0313, \g = 0.2287, A33 = 0.1175, A34 = 0.1173; pg =1 | 0.5333 | 0.979
Ao = 0.1668, A3 = 0.2968, Ag = 0.09, Ao = 0.1659, Agpo = 0.1786, A4; = 0.0425, 0.5355 | 0.983
)\68 = 00594, P10 = 1
Table 3: Degree Sequences with Parameters (g, b, na,ns) = (0.01,0.01,0.01,0.4).
Method | Degree sequence Rate R | R/C
Conv. [7] | A2 = 0.2323, A3 = 0.2537, Ajp = 0.1695, A2 = 0.0935, A3 = 0.0099, A4y = 0.0077, | 0.3469 | 0.815
A6 = 0.2334; pg = 0.35, p; = 0.65
IDA Ao = 0.2323, A3 = 0.2794, Ag = 0.138, A\g = 0.0673, X190 = 0.283; p7 =1 0.3968 | 0.932
EDE A2 = 0.2323, A3 = 0.3069, A9 = 0.1453, Ao = 0.0403, X100 = 0.2752; p7 =1 0.4082 | 0.959

executing the DE twice is more accurate than that of
the SGA. Consequently, we showed that code rate ob-
tained by the design method with the IDA was higher
than that of the conventional method. Furthermore, we
proposed the design method by using the EDE. Con-
sequently, we can design good LDPC codes with the
higher rate by the effective use of the EDE.

[4]

tions on Information Theory, vol. 47, no.2, pp.619
- 637, Feb. 2001.

S. Y. Chung, T. J. Richardson and R. L. Ur-
banke, “Analysis of Sum-Product Decoding of
Low-Density Parity-Check Codes Using a Gaus-
sian Approximation,” IEEE Transactions on In-
formation Theory, vol. 47, no.2, pp.657 - 670, Feb.
2001.

[5] M. Ardakani and F. R. Kschischang, “A More Ac-

References curate One-Dimensional Analysis and Design of Ir-
lar LDPC Codes,” IEEE T .onC .

[1] R. G. Gallager, Low Density Parity Check Codes, regiar 0des, rans. on Lommun.,

[2]

(3]

Cambridge, MA: MIT Press, 1963.

T. J. Richardson, R. L. Urbanke, “The Capacity of
Low-Density Parity-Check Codes Under Message-
Passing Decoding,” , IEEE Transactions on Infor-
mation Theory, vol. 47, no.2, pp.599 - 618, Feb.
2001.

T. J. Richardson, M. A. Shokrollahi and R. L. Ur-
banke, “Design of Capacity-Approaching Irregular
Low-Density Parity-Check Codes,” IEEE Transac-

521

vol. 52, no. 12, pp.2106-2114, Dec. 2004.

A. W. Eckford, F. R. Kschischang and S. Pasupa-
thy, “Analysis of Low-Density Parity-Check Codes
for the Gilbert-Elliott Channel, ” TEEE Trans. on
Information Theory, vol. 51, no.11, pp.3872-3889,
Nov. 2005.

A. W. Eckford, F. R. Kschischang and S. Pasupa-
thy, “On Designing Good LDPC Codes for Markov
Channels,” IEEE Trans. on Information Theory,
vol.53, no.1, pp5-21, Jan. 2007.



	typ_page1: 517
	typ_page2: 518
	typ_page3: 519
	typ_page4: 520
	typ_page5: 521
	tyt_no: 
	typ_page: 


