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Fingerprinting Codes for Multimedia Data against Averaging
Attack∗

Hideki YAGI†, Toshiyasu MATSUSHIMA††, Members, and Shigeichi HIRASAWA†††, Fellow

SUMMARY Code construction for digital fingerprinting, which is a
copyright protection technique for multimedia, is considered. Digital
fingerprinting should deter collusion attacks, where several fingerprinted
copies of the same content are mixed to disturb their fingerprints. In this
paper, we consider the averaging attack, which is known to be effective for
multimedia fingerprinting with the spread spectrum technique. We propose
new methods for constructing fingerprinting codes to increase the coding
rate of conventional fingerprinting codes, while they guarantee to identify
the same number of colluders. Due to the new fingerprinting codes, the
system can deal with a larger number of users to supply digital contents.
key words: fingerprinting codes, averaging attack, finite geometry, low-
density matrix, multimedia

1. Introduction

With high advances of information technologies, copyright
protection of digital contents has become an important prob-
lem. As one of solutions, digital fingerprinting has attracted
a great deal of attention for protection of content distribu-
tion systems. The digital fingerprinting embeds a user’s ID,
called a fingerprint, into an original content with a water-
marking technique. After embedding fingerprints, finger-
printed contents are distributed to respective users.

Digital fingerprinting requires robustness against col-
lusion attacks, in which more than one illicit user colludes
to take illegal actions to their distributed contents. Some of
well-known collusion attacks are the interleaving attack [1],
[4], [9] and the averaging attack [4], [11]–[13], [16], [17].
The interleaving attack is generally considered for finger-
printing of generic digital data. On the other hand, the
averaging attack is assumed for multimedia fingerprinting,
and it is conducted by the arithmetic averaging operation
among all fingerprinted copies of colluders. On the whole,
multimedia fingerprinting employs a spread spectrum tech-
nique to embed users’ fingerprint, where pseudo-random se-
quences spread a binary value over a wide domain of a host
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data. Although most of multimedia fingerprinting does not
adopt any coding technique, W. Trappe et al. have devised
collusion-secure fingerprinting codes against the averaging
attack. Their codes are constructed based on incident matri-
ces of block designs [11], which is equivalent to regular low-
density (LD) matrices without cycles of length four [5]. The
fingerprinting codes devised by Trappe et al. are called anti-
collusion (AC) codes [11], [12]. Subsequently, Kang et al.
have proposed a method for improving the efficiency of AC
codes based on group-divisible design [16], [17]. Although
these codes can guarantee to capture colluders whose size
is not greater than a pre-determined value, unfortunately,
their coding rates rapidly decrease with increasing the code
length.

In this paper, we propose methods for improving fin-
gerprinting codes devised by Trappe et al. or Yang et al. [15]
by increasing its coding rate, while their resilience is main-
tained. We first derive some general condition which relaxes
restriction of the conventional AC codes, providing flexible
design of fingerprinting codes. We then propose two explicit
construction methods by using finite field arithmetics based
on the derived condition. The proposed method presented
first utilizes structure of finite geometries, which allow us to
algebraically realize AC codes satisfying the derived condi-
tion. The latter method is based on a construction technique
of structured LD matrices. The latter construction method is
the primary contribution of this paper, and the first one is uti-
lized as its component. The proposed methods also increase
the coding rate of AC codes in [16], [17]. Consequently, we
can realize content distribution systems which can deal with
greater number of users.

This paper is organized as follows: In Sect. 2, we de-
scribe a model of fingerprinting system considered in this
paper. In Sect. 3, we briefly review conventional AC codes
for multimedia. In Sect. 4, we derive some general condi-
tion, which relaxes restriction of the conventional AC codes.
In Sect. 5, based on the derived condition, we propose a
method for improving the conventional AC codes by using
finite geometries. In Sect. 6, we propose another method,
which combines structured LD matrices and other code ma-
trices of AC codes. In Sect. 7, we compare the effectiveness
of the proposed methods with the method in [16], [17]. In
Sect. 8, some concluding remarks are stated.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers
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2. Model of Fingerprinting System

2.1 Digital Fingerprinting for Multimedia

We describe a model of multimedia fingerprinting consid-
ered in this paper. The model in this paper follows [11],
[12].

When distributing a digital content to users, a code-
word corresponding to each user is embedded into an origi-
nal content by a watermarking technique. The codeword al-
located for each user is called the user’s fingerprint, and the
distributed contents are called fingerprinted contents. Some
illicit users may collude to use their fingerprinted content
for an illegal purpose. They may attempt to disturb their fin-
gerprints so that their fingerprints are not revealed from an
illegally utilized content. This action is called a collusion
attack. A detector of colluders estimates colluders’ finger-
prints from a disturbed fingerprint.

Let Γ := {1, 2, . . . , |Γ|} be a set of users of a digi-
tal content. We denote a codeword to a user j ∈ Γ by
b j = (b1 j, b2 j, . . . , bN j)T ∈ {0, 1}N , where T denotes the
transposition. In stead of directly embedding b j into a host
content, we create a fingerprint watermark w j by a spread
spectrum technique beforehand. We arrange N mutually or-
thogonal bases u1, u2, . . . , uN ∈ RN of an equal energy λ,
which form an N dimensional real vector space. We denote
the set of these N orthogonal bases by U :=

{
ui

∣∣∣ ‖ui‖2 =
λ, i = 1, 2, . . . ,N

}
. Then each w j ∈ RN , j = 1, 2, . . . , |Γ|, is

created by a fingerprint b j andU as

w j :=
N∑

i=1

(2bi j − 1)ui, (1)

where the summation expresses the addition of real num-
bers.

Next, regarding a distributed content to users as a host
signal, the created fingerprint watermark is embedded into
it. Denoting embedded parts of a host signal by a vector x ∈
RN , the distributed content to a user j ∈ Γ is†, y j := x + w j.

Figure 1 illustrates the embedding process of finger
prints. Since the fingerprint is embedded by using water-
marking and spread spectrum techniques, any users cannot
perceive their own fingerprint w j (and hence b j) from the
fingerprinted content y j without the knowledge of x andU.
Therefore illicit users may collude to disturb their finger-
prints by creating an illegal content from their distributed
contents.

2.2 Assumed Collusion Attack

We consider a set of colluders with size h ≥ 1, denoted by
S ⊆ Γ. We assume S = { j1, j2, . . . , jh} such that 1 ≤ j1 <
j2 < · · · < jh ≤ |Γ|. Assume that a colluder set S attacks
to create an illegal content, denoted by y ∈ RN . A detector
of colluders estimates S from an attacked content y. In this
paper, we assume the following collusion attack.

Fig. 1 Illustration of fingerprinting model.

Definition 1: Assume that an attacked content by a col-
luder set S is expressed as

y :=
1
h

∑
j∈S
y j = x +

1
h

∑
j∈S

N∑
i=1

(2bi j − 1)ui, (2)

where the second equality is obtained from Eq. (1). This
attack is called the averaging attack, which is known to be
effective for multimedia fingerprinting††, [4], [11]–[13]. �

3. Fingerprinting Codes against Averaging Attack

3.1 Conventional Anti-Collusion Codes

Trappe et al. have proposed a code construction method of
anti-collusion (AC) codes by utilizing block design [11]. We
here introduce the definition of AC codes. For any subsets
I ⊆ Γ, let Q(I) := {i|bi j = 0,∀ j ∈ I}. In other words, Q(I)
represents the set of symbol positions where any fingerprints
in I equally take 0-component.

Definition 2: Assume that the detector of colluders have
the complete knowledge about a host signal x, the set of
orthogonal sequences U. For some positive integer �, a bi-
nary code B = {b j} is referred to as an �-resilient AC code,
iff any subsets I ⊆ Γ of size |I| ≤ � has unique Q(I). The
parameter � is called the resilience of AC codes. �

Hereafter we assume that a host signal x, the set of
orthogonal sequencesU, and an AC code are known to the
detector.

†In this paper, for simplicity, the fingerprinted content is de-
fined in this manner. More precisely, eachw j is multiplied by some
value called Just-Difference Noticeable (JDN) coefficient [7], be-
fore it is added to the host signal.
††For simplicity, although we only discuss the case of the aver-

aging attack, the argument here can hold for the logical OR attack
[15]. The fingerprinting codes devised by J. Yang et al. [15] are
also based on block design, and the proposed method in this paper
can also improve their performance.
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Trappe et al. have proposed some construction of AC
codes, which satisfy some condition.

Definition 3: Consider the following condition on AC
codes:

(i) any codeword has a constant Hamming weight k;
(ii) two distinct codewords have at most one “1-

component” in the same position.
We call this condition the conventional condition.

�

In the next section, the conventional condition will be re-
laxed to enlarge a class of AC codes.

Resilience of the AC code based on the conventional
condition can be guaranteed by the following lemma.

Lemma 1 ([11]): Let B = [bi j] be some binary matrix of
N rows which satisfies the conventional condition. If a j-
th column vector b j = (b1 j, b2 j, . . . , bN j)T is a j-th user’s
fingerprint, a set of column vectors B = {b j} becomes a
(k − 1)-resilient AC code. i.e., if |S| ≤ k − 1, Q(S) can be
uniquely identified. �

We here show a principle for detecting a set of collud-
ers with a (k − 1)-resilient AC code. We here use an exam-
ple for simplicity. Suppose k = 3 and S = {i, j} whose
fingerprints are given by bi = (1, 1, 0, 1, 0, 0, 0)T, b j =

(1, 0, 1, 0, 0, 1, 0)T. Then from Eq. (1),

wi = u1 + u2 − u3 + u4 − u5 − u6 − u7, (3)

w j = u1 − u2 + u3 − u4 − u5 + u6 − u7. (4)

As a result of the averaging attack, an illegal content y =
x + (wi + w j)/2 is produced. With a known x, we can sub-
tract x from y, which gives y − x = u1 − u5 − u7 from
Eqs. (2)–(4). The detected sequence y − x has a tuple of co-
efficients (1, 0, 0, 0,−1, 0,−1), which can be calculated by
taking the inner product between y − x and each orthogo-
nal basis ui, i = 1, 2, . . . ,N. Thus the position set of (−1)-
components in this tuple is {5, 7}, and it coincides with the
setQ(S). From Definition 2, since a (k−1)-resilient AC code
uniquely determines Q(S) for any S such that |S| ≤ k − 1,
the position set of (−1)-components calculated from y − x
reveals that the user i and j participate in the collusion. Even
for a general case, any (k−1)-resilient AC code can identify
colluders in this way [11], [12].

3.2 Class of AC Codes Based on Finite Geometries

A subclass of AC codes by Trappe et al. can be algebraically
constructed by using finite geometries. We briefly describe
two kinds of finite geometries, namely, a Euclidean geom-
etry and a projective geometry. Refer to [5], [10] for more
detail.

For a prime p and two positive integers m ≥ 2 and
s ≥ 1, an m-dimensional Euclidean geometry EG(m, ps)
over a Galois field GF(ps) consists of points, lines, and hy-
perplanes. Any points in EG(m, ps) are pms m-dimensional

vectors over GF(ps), and they constitute an m-dimensional
vector space V over GF(ps). For an integer μ such that
0 ≤ μ ≤ m, μ-dimensional hyperplanes (generally, called
a μ-flat) is a μ-dimensional subspace of V and its cosets.
Any μ-flat contains exactly pμs points. Points and lines cor-
respond to 0-flats and 1-flats, respectively.

For a given μ < m, let a0, a1, . . . , aμ be μ + 1 linear
independent points in EG(m, ps). Then using μ elements
β1, β2, . . . , βμ of GF(ps), pμs points expressed as

a0 + β1a1 + β2a2 + · · · + βμaμ (5)

constitute a μ-flat.
It can be easily verified that any pair of two μ-flats,

(F1, F2), has at most one (μ − 1)-flat in common, which im-
plies F1 and F2 have at most p(μ−1)s points in common. In a
Euclidean geometry EG(m, ps), there are

f (m)
EG (μ) := p(m−μ)s

μ∏
i=1

p(m−i+1)s − 1
p(μ−i+1)s − 1

(6)

μ-flats in total.

Denoting an m-dimensional projective geometry over
a Galois field GF(ps) by PG(m, ps), PG(m, ps) contains
(p(m+1)s − 1)/(ps − 1) points. We can also consider μ-flats in
a projective geometry PG(m, ps), and each μ-flat consists of
(p(μ+1)s − 1)/(ps − 1) points. In PG(m, ps), there are

f (m)
PG (μ) :=

μ∏
i=0

p(m−i+1)s − 1
p(μ−i+1)s − 1

(7)

μ-flats in total. Any pair of two μ-flats, (F1, F2), has at most
one (μ − 1)-flat in common, which implies F1 and F2 have
at most (pμs − 1)/(ps − 1) points in common.

For simplicity, we sometimes use expression FG(m, ps)
to express either a Euclidean geometry EG(m, ps) or a pro-
jective geometry PG(m, ps). In a similar manner, f (m)

FG (μ)
expresses either f (m)

EG (μ) or f (m)
PG (μ). We define N0 := f (m)

FG (0),
which expresses the number of points in FG(m, ps).

We number N0 points in a given FG(m, ps) from 1 to
N0 and f (m)

FG (μ) μ-flats in FG(m, ps) from 1 to f (m)
FG (μ). Sup-

pose an N0 × f (m)
FG (μ) matrix Bμ = [bi j] and allocate the rows

and the columns of Bμ to points and μ-flats in FG(m, ps), re-
spectively. A component bi j in a matrix Bμ takes bi j = 1 if a
point i is contained in a μ-flat j, and takes bi j = 0 otherwise.
This matrix Bμ is referred to as the incident matrix of μ-flats
over points in FG(m, ps).

Arranging each column vector of the incident matrix
B1 of 1-flats (lines) over points in FG(m, ps) as a codeword,
an AC code of Trappe et al. can be obtained. They utilize
the two properties; (i) any 1-flat in FG(m, ps) has a constant
number of points, (ii) any pair of two 1-flats has at most
one point in common. That is, AC codes obtained from
FG(m, ps) satisfy the conventional condition. Any AC code
constructed from EG(m, ps) becomes a (ps −1)-resilient AC
code from Lemma 1. By using PG(m, ps) to construct an AC
code, the code becomes a ps-resilient AC code. We denote
this AC code by B1 and refer to as conventional AC codes
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based on finite geometries.
We here mention parameters of an AC code B1. The

code length is N = N0, which equals to the number of points
in FG(m, ps). The number of codewords (the number of ac-
commodated users) is f (m)

FG (1), which expresses the number
of 1-flats in FG(m, ps). Thus the coding rate r1 is given by
r1 = (log2 f (m)

FG (1))/N0 [5]. For given resilience and code
length, as the number of codewords increases, the system
can provide services to more users. Therefore we need to
increase the number of codewords as large as possible for
given resilience and code length.

For B1 based on EG(m, s), the number of codewords is
f (m)
EG (1) = p(m−1)s(pms−1)/(ps−1) = O(p2(m−1)s). Therefore,

taking notice that N0 = pms and ps = N
1
m

0 , we have

f (m)
EG (1) = O(N2

0 p−2s) = O(N
2− 2

m

0 ). (8)

Equation (8) indicates that the number of codewords ap-
proximately increases in the order of square of code length.
This quantity is insufficient if we want to accommodate a
large number of users. Increasing the number of codewords
in larger order of code length is desired. Note that, for the
case with PG(m, s), the number of codewords is also the or-
der of square of code length but it is omitted here.

3.3 Class of AC code Based on Quasi-Cyclic LD Matrices

Another class of �-resilient AC codes by Trappe et al. can be
algebraically constructed based on regular low-density (LD)
matrices without cycles of length four [5].

Let α be a primitive element over a Galois field
GF(pms) and we denote the zero element over this field by
0 = α−∞. Then any non-zero element can be expressed
as αi for i = 0, 1, . . . , pms − 2. For any element αi, let
zi = (zi,−∞, zi,0, zi,1, . . . , zi,pms−2) be a pms-tuple over GF(2)
such that it takes zi, j = 1 if i = j, and zi, j = 0 otherwise.
The vector zi is called the location vector of αi. Arrange
pms cyclic-shifted versions of the location vector zi to form
a pms × pms circulant matrix, where the first row is zi itself
and a j-th row is the right-shifted version of zi by j−1 times.
We denote this matrix of αi by πi(I), where I corresponds to
the pms × pmscirculant matrix of 0 = α−∞ (i.e., the identity
matrix) and π expresses the cyclic permutation.

For two integers γ ≥ 1 and ρ ≥ 1, a quasi-cyclic (QC)
LD matrix defined over a Galois field GF(pms) is of the form

M0 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πa1,1 (I) πa1,2 (I) · · · πa1,ρ(I)
πa2,1 (I) πa2,2 (I) · · · πa2,ρ(I)
...

...
. . .

...
πaγ,1 (I) πaγ,2 (I) · · · πaγ,ρ (I)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9)

where πai, j (I) for i = 1, 2, . . . , γ and j = 1, 2, . . . , ρ is a pms ×
pms circulant matrix of αai, j . Thus the size of M0 is γpms ×
ρpms. Define

a j :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1, j

a2, j
...

aγ, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, for j = 1, 2, . . . , ρ. (10)

If any pair of ai and a j (i, j = 1, 2, . . . , ρ) satisfies
dH(ai, a j) ≥ γ − 1, then any pair of two columns of the ma-
trix M0 has at most one 1-component in common, and vice
versa [2], [3], [14]. Such matrix M0 is called a (γ, ρ) QC-LD
matrix.

The QC-LD matrices are utilized for constructing
error-correcting codes [5], and there have been proposed
many types of QC-LD matrices. Some examples of QC-LD
matrices considered in this paper are constructed based on
the structure of the Reed-Solomon code [2], [6] or based on
the structure of the Array codes [3], [14]. In [2], it has been
shown that (γ, ρ) QC-LD matrices for 2 ≤ γ ≤ pms − 1, 1 ≤
ρ ≤ pms can be constructed for a given GF(pms).

Since a (γ, ρ) QC-LD matrix satisfies (i) each column
weight is γ, and (ii) any pair of two columns has at most one
1-component in common, any AC code whose codewords
are arranged from column vectors of M0 is a (γ−1)-resilient
AC code. We denote this AC code byM0 and call conven-
tional AC codes based on QC-LD matrices.

We here mention the code parameters of conventional
AC codes based on QC-LD matrices. The code length, the
number of codewords, and the resilience are N = γpms,
ρpms, and � = pms − 1, respectively. To the code length
N, the number of codewords is expressed as O( N2

γ2 ) if we
choose the value of ρ as ρ = pms to maximize the number
of codewords. Similar to the conventional AC codes based
on finite geometries, increasing the number of codewords in
larger order of code length is desired.

4. Relaxation of Conditions on AC Codes

In this section, we relax the conventional condition of AC
codes in Definition 3, which provides a larger class of AC
codes†. Our purpose in this paper is to increase the coding
rate of AC codes, and enlarging the class of AC codes may
unable us to find AC codes with larger coding rates.

4.1 Derivation of Condition

The relaxation proposed in this paper consists of two main
ideas; (i) increasing the Hamming weight of codewords, and
(ii) allowing more than one 1-component in common be-
tween two codewords. For a real number v, let �v� be the
minimum integer not less than v.

Lemma 2: Assume that a binary matrix satisfies:

(i) the Hamming weight of each column is at least k;

†This extension is not limited to the AC codes using finite ge-
ometries or QC-LD matrices but can apply to any AC codes in
[11], [15].
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(ii) any pair of distinct two column vectors has at most t
1-components in common.

Then, an AC code obtained from this matrix is a (�k/t� − 1)-
resilient AC code.

(Proof ) The proof is an extension of that of Theorem 1 in
[11] for the case t ≥ 1.

We denote the row position set (support set) in which a
j-th column vector b j has 1-components by A j. i.e., A j :=
{i| bi j = 1}. By using A j, j ∈ S, the set Q(S) is expressed
as Q(S) =

⋂
j∈S A j, where A j is the complement of A j.

Suppose |S| ≤ �k/t� − 1. If
⋂

j∈S A j �
⋂

i∈I Ai for arbitrary
subset I ⊆ Γ such that I � S and |I| ≤ �k/t� − 1, a code
B = {b j} is an �-resilient AC code. Furthermore, from De
Morgan’s low, this condition is equivalent to⋃

j∈S
A j �

⋃
i∈I
Ai, ∀I � S, s.t. |I| ≤ �k/t� − 1. (11)

Thus it suffices to show Eq. (11) for proving the lemma.
We suppose temporarily that a setI � Swith size |I| ≤

�k/t� − 1 satisfies
⋃

j∈S A j =
⋃

i∈I Ai. Then A j ⊆ ⋃
i∈I Ai

for any j ∈ S. From the assumption of the lemma, for some
A jo , jo ∈ S \ (S ∩ I), anyAi, i ∈ I, has at most t elements
in common with A jo . Therefore it requires |I| ≥ �k/t� to
satisfy A jo ⊆ ⋃i∈I Ai from the assumption |A jo | ≥ k. Thus
it contradicts the assumption |I| ≤ �k/t� − 1, and Eq. (11)
holds. �

The AC codes assumed in Lemma 2 are reduced to the
AC codes in [11] if their codewords have a constant Ham-
ming weight k and t = 1. Therefore this extension provides
a large class of �-resilient AC codes. More importantly, it
is possible to increase the number of codewords by varying
the parameters k and t for given N and �. Later, we will give
two explicit construction methods by utilizing the relaxed
condition.

4.2 Distortion Given by AC Codes with Relaxed Condi-
tion

We here mention distortion to an original content given by
AC codes with the relaxation of the conditions.

Distortion to a digital content x by a fingerprint b j can
be measured by ‖w j‖2, where ‖ · ‖2 denotes the square of
norm, since y j = x+w j. Then the average distortion of x by
an AC code B = {b j} is expressed as E[‖w j‖2], where E[·]
denotes the expectation by B. It follows from Eq. (1) that
the average distortion to the content x can be calculated as

E
[
‖w j‖2

]
= E

[∥∥∥∥
N∑

i=1

(2bi j − 1)ui

∥∥∥∥2
]

= E
[ N∑

i=1

(2bi j − 1)2‖ui‖2
]
, (12)

where the second equality can be obtained by the property

of the orthogonal sequences {ui}. Taking notice that (2bi j −
1)2 = 1 for any bi j ∈ {0, 1}, we have

E
[
‖w j‖2

]
= E

[ N∑
i=1

‖ui‖2
]
=

N∑
i=1

‖ui‖2 = Nλ, (13)

where λ represents the equal power of orthogonal bases {ui}.
It can be seen from Eq. (13) that the distortion takes a con-
stant value Nλ regardless of distribution of symbols of {b j}.

Therefore the distortion to an original content given by
the AC codes of Lemma 2 is equal to that in [11] for given
code length, even if the Hamming weight of each codeword
increases.

5. Improvement of AC Codes Using Finite Geometries

We propose an explicit construction method by using finite
geometries based on the relaxed condition. The proposed
method increases the coding rate of the conventional AC
codes with keeping code length and resilience.

5.1 AC Codes Based on Finite Geometries

As explained in Sect. 3.2, when constructing �-resilient AC
codes of [11] by using finite geometries FG(m, ps), we
consider relationship between points and lines (1-flats) in
FG(m, ps). In the new code construction, the relationship
between points and μ-flats (μ ≥ 1) in FG(m, ps) is utilized.

Definition 4: For μ ≥ 1, let Bμ be the incident matrix of
μ-flats over points in a finite geometry FG(m, ps), and we
denote its j-th column vector by b j. Allocating b j to a j-
th user’s fingerprint, the obtained code Bμ := {b j} is called
a μ-th order FG-AC code. In particular, an AC code Bμ
constructed from a Euclidean geometry and a projective ge-
ometry are called a μ-th order EG-AC code and a μ-th order
PG-AC code, respectively. �

We then obtain the following theorem.

Theorem 1: For some EG(m, ps), the μ-th order EG-AC
codeBμ is a (ps−1)-resilient AC code. For some PG(m, ps),
the μ-th order PG-AC code Bμ is a ps-resilient AC code.

(Proof ) As explained in Sect. 3.2, any pair of two μ-flats,
F1 and F2, in FG(m, ps) has at most one (μ− 1)-flat in com-
mon. It can be seen that the case of EG-AC codes corre-
sponds to that of substituting k = pμs, t = p(μ−1)s in Lemma
2. Therefore the resilience is �k/t� − 1 = ps − 1. As for PG
codes, we have the relationship of k = (p(μ+1)s − 1)/(ps −
1), t = (pμs − 1)/(ps − 1) in Lemma 2, which leads to the
resilience of �k/t� − 1 = ps. �

From Theorem 1, it can be found that the resilience of
a μ-th order FG-AC code Bμ is independent of the order μ.

We here mention parameters of μ-th order FG-AC
codes. For a given FG(m, ps), we can construct m − 1 μ-
th order FG-AC codes Bμ for μ = 1, 2, . . . ,m − 1 with the
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same resilience. From the properties of the incident ma-
trix of μ-flats over points, the code lengths of these FG-AC
codes Bμ are equally N = N0 and the numbers of code-
words are f (m)

FG (μ). The coding rate, denoted by rμ, is given
by rμ = (log2 f (m)

FG (μ))/N0. i.e., parameter of Bμ depend-
ing on the order μ is only the number of codewords, which
determines the FG-AC code Bμ∗ with the maximal size for
a given FG(m, ps). Therefore we call such an order μ∗ the
maximal order of the FG-AC codes for a given FG(m, ps).

We show the following theorems about the maximal
order of FG-AC codes for a given FG(m, ps). For a real
number v, let �v� be the maximum integer not greater than v.

Theorem 2: For a given EG(m, ps), the maximal order μ∗
of the EG-AC codes is given by

μ∗ =
⌊m

2

⌋
. (14)

(Proof ) If m = 2, we can easily check that μ∗ = 1 takes
the maximum value in Eq. (6). When m ≥ 3, we show that
the function f (m)

EG (μ) is convex upward. We define g(m)
EG(μ) :=

f (m)
EG (μ) − f (m)

EG (μ − 1) for 2 ≤ μ ≤ m and we investigate its
sign. We can easily verify that

g(m)
EG(μ) = p(m−μ)s

μ−1∏
i=1

p(m−i+1)s−1
p(μ−i)s−1

{
p(m−μ+1)s−1

pμs−1
−ps

}

=
p(m−μ)s

pμs − 1

μ−1∏
i=1

p(m−i+1)s − 1
p(μ−i)s − 1

·
{
p(m−μ+1)s − p(μ+1)s + ps − 1

}
(15)

from Eq. (6). In Eq. (15), the first and second terms of r.h.s.
are strictly positive for 2 ≤ μ ≤ m. i.e.,

p(m−μ)s

pμs − 1

μ−1∏
i=1

p(m−i+1)s − 1
p(μ−i)s − 1

> 0. (16)

Thus only the last term

h(m)
EG(μ) := p(m−μ+1)s − p(μ+1)s + ps − 1 (17)

varies its sign, and the sign of h(m)
EG(μ) coincides with that of

g(m)
EG(μ).

If m is odd, h(m)
EG(μ) > 0 for 2 ≤ μ ≤ m−1

2 , and h(m)
EG(μ) <

0 for m+1
2 ≤ μ ≤ m. This fact implies that the function

f (m)
EG (μ) is convex upward and it takes the maximum value

for μ = m−1
2 . If m is even, h(m)

EG(μ) > 0 for 2 ≤ μ ≤ m
2 , and

h(m)
EG(μ) < 0 for m

2 + 1 ≤ μ ≤ m. Then the function f (m)
EG (μ)

is also convex upward and it takes the maximum value for
μ = m

2 . Thus Eq. (14) holds. �

Theorem 3: For a given PG(m, ps), the maximal order μ∗
of the PG-AC codes is given by

μ∗ =
{

m−1
2 , for odd m,

m
2 − 1 and m

2 , for even m.
(18)

(Proof ) We can prove the theorem in a similar manner to
Theorem 2. If m = 2, we can easily check that both μ∗ = 0
and μ∗ = 1 take the maximum value in Eq. (7). When m ≥ 3,
defining g(m)

PG (μ) := f (m)
PG (μ) − f (m)

PG (μ − 1) for 2 ≤ μ ≤ m, it
follows from Eq. (7) that

g(m)
PG (μ) =

1
p(μ+1)s − 1

μ−1∏
i=0

p(m−i+1)s − 1
p(μ−i)s − 1

·
{
p(m−μ+1)s − p(μ+1)s

}
. (19)

Again, in Eq. (19), the first and second terms of r.h.s. are
strictly positive for 2 ≤ μ ≤ m and only the last term
h(m)

PG (μ) := p(m−μ+1)s − p(μ+1)s varies its sign.

If m is odd, h(m)
PG (μ) > 0 for 2 ≤ μ ≤ m−1

2 , and h(m)
PG (μ) <

0 for m+1
2 ≤ μ ≤ m. Then the function f (m)

PG (μ) is convex
upward and it takes the maximum value for μ = m−1

2 . If m

is even, h(m)
PG (μ) ≥ 0 for 2 ≤ μ ≤ m

2 , where equality holds
iff m = m

2 , and h(m)
PG (μ) < 0 for m

2 + 1 ≤ μ ≤ m. Then

the function f (m)
EG (μ) is also convex upward and it takes the

maximum value for μ = m
2 − 1 and μ = m

2 . Thus Eq. (18)
holds. �

It follows from Theorems 2 and 3 that there always ex-
ists a better FG-AC code than the AC code B1 of Trappe et
al. when m > 3.

We compare the numbers of codewords for B1 and Bμ∗
as a function of the code length N = N0. From Eq. (8), the
number of codewords of B1 is f (m)

EG (1) = O(N2− 2
m ) where

N = N0. Similarly, for general 1 ≤ μ ≤ m, we can eas-
ily verify f (m)

EG (μ) = O(p(m−μ)(μ+1)s) from Eq. (6). Define a
function δ(m) of m as

δ(m) :=

{
1
m , for odd m,
0, for even m.

(20)

From Theorem 2, μ∗ = �m
2 � and by substitution, we have

f (m)
EG (μ∗) = O

(
p

1
4 ms(m+2+δ(m))

)
(21)

= O
(
N

1
4 (m+2+δ(m))

)
. (22)

It follows from Eqs. (8) and (22) that the number of code-
words of Bμ∗ rapidly increases to the code length N as m
increases, while the number of codewords in B1 does not
increases more than the order of N2.

5.2 Examples of FG-AC Codes with the Maximal Order

For a given EG(m, ps), we show some examples of EG-AC
codes Bμ∗ with the maximal order in Table 1. For m > 3,
we display codes with the resilience (ps − 1) greater than
one in the increasing order of their resilience. In the table,
the columns of “log2 fEG(1)” and “log2 fEG(μ∗)” express the
logarithm of the number of codewords of B1 (the Trappe’s
AC code) and that of the EG-AC code Bμ∗ with the maximal
order.



YAGI et al.: FINGERPRINTING CODES FOR MULTIMEDIA DATA AGAINST AVERAGING ATTACK
213

Table 1 Examples of EG-AC codes with maximal order.

� (m, ps) N0 log2 fEG(1) log2 fEG(μ∗) μ∗

2 (4, 31) 81 10.08 10.19 2
(5, 31) 243 13.26 15.00 2
(6, 31) 729 16.43 19.80 3
(7, 31) 2187 19.60 26.16 3
(8, 31) 6561 22.77 32.52 4

3 (4, 22) 256 12.41 12.48 2
(5, 22) 1024 16.41 18.50 2
(6, 22) 4096 20.41 24.52 3

4 (4, 51) 625 14.25 14.30 2
(5, 51) 3125 18.90 21.28 2

Table 2 Examples of PG-AC codes with maximal order.

� (m, ps) N0 log2 fPG(1) log2 fPG(μ∗) μ∗

3 (4, 31) 121 10.24 10.24 1, 2
(5, 31) 364 13.43 15.05 2
(6, 31) 1093 16.60 19.82 2, 3
(7, 31) 3280 19.77 26.18 3
(8, 31) 9841 22.94 32.52 3, 4

4 (4, 22) 341 12.50 12.50 1, 2
(5, 22) 1365 16.51 18.52 2
(6, 22) 5461 20.51 24.53 2, 3

5 (4, 51) 781 14.31 14.31 1, 2
(5, 51) 3906 18.96 21.29 2

It follows from the property of the function f (m)
EG (μ) that

the number of codewords of Bμ∗ becomes larger than that of
B1 as the dimension m of EG(m, ps) increases. In particular,
the number of codewords of Bμ∗ is 22 times larger than that
of B1 when m ≥ 5, 26.5 times larger for EG(7, 3), and 210

times larger for EG(8, 3).
We also show examples of PG-AC codes Bμ∗ with the

maximal order in Table 2 for a given PG(m, ps). The PG-AC
codes with the maximal order behave similar to the EG-AC
codes. There exist two maximal orders when m is even.

6. Improvement of AC Code Based on Quasi-Cyclic LD
Matrix

In this section, we show how to improve such AC codes by
using QC-LD matrices.

6.1 AC Codes Based on Quasi-Cyclic LD Matrix

We propose a method for increasing the number of code-
words of AC codes based on QC-LD matrices while main-
taining the resilience.

The proposed method combines a QC-LD matrix M0

given by Eq. (9) and another code matrix of an AC code.
Let n and f be integers such that n ≥ pms and f ≥ 2. Let B
be an n× f code matrix of some �-resilient AC code. We re-
place an (i, j)-th circulant matrix πai, j (I) (i = 1, 2, . . . , γ, j =
1, 2, . . . , ρ) of M0 with a matrix πai, j (B), which can be ob-
tained to right-shift the matrix B ai, j times. Let the resultant

matrix be denoted by M′. The following theorem shows that
this code matrix gives some AC code.

Theorem 4: LetM′ be a set of all column vectors of M′.
A code M′ has (i) the code length γn, (ii) the number of
codewords ρ f , and (iii) the resilience min{γ−1, �}.

(Proof ) Since both (i) the code length and (ii) the num-
ber of codewords are obvious, we here mention (iii) the re-
silience.

We partition γn rows of the matrix M′ by n rows into
γ groups, and we call a ν-th group (the (νn + 1)-th row to
(ν + 1)n-th row) the ν-th row section. Each column vector
mj ∈ {0, 1}γn of M′ can be expressed with γ vectors mν, j ∈
{0, 1}n as

mj :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1, j

m2, j
...

mγ, j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (23)

We denote the support set of mν, j (ν = 1, 2, . . . , γ) byAν, j.
(i) the case of γ − 1 ≤ �:

Consider a colluder setS of size |S|≤γ−1. We suppose
there exists a set of users, I, of size |I| ≤ γ − 1 satisfying
Q(S) = Q(I). As in the proof of Lemma 2, this equation
can be re-written as†⋃

j∈S

⋃
ν∈[1,γ]

Aν, j =
⋃
i∈I

⋃
ν∈[1,γ]

Aν,i. (24)

In this case, it requiresAν, jo ⊆ ⋃i∈I Aν,i, ν = 1, 2, . . . , γ, for
any column vectors mjo , ∀ jo ∈S\(S ∩ I), of M′.

For any i ∈ I, there are no two row sections (say,
ν1-th and ν2-th row sections) such that mν1, jo = mν1,i and
mν2 , jo = mν2 ,i. Otherwise, these equations imply that there
exists a pair of two column vectors having more than one
1-component in common in the original QC-LD matrix M0.
Since |I| ≤ γ − 1, there exists at least one row section (say,
ν∗-th row section) in which mν∗ , jo � mν∗ ,i for any i ∈ I.
Since column vectors mν∗ , jo and mν∗ ,i for i ∈ I are originally
codewords of an �-resilient AC code B and γ − 1 ≤ �, we
haveAν∗ , jo � ⋃i∈I Aν∗ ,i. Thus it contradicts to Eq. (24), and
the code is a (γ − 1)-resilient AC code when γ − 1 ≤ �.
(ii) The case of γ − 1 > �:

Taking similar steps to the case (i), it can be shown that
the code should be a �-resilient AC code. Thus the theorem
holds. �

Theorem 4 indicates that we can increase the number
of codewords ofM0 by using some B such that γ − 1 ≤ �
and f > pms with keeping the resilience. In particular, if
n = pms, the code length of a resultant AC codeM′ remains
equal as well as the resilience.

By using a Euclidean geometry, we can consider a
similar technique in Sect. 5. For a Euclidean geometry
EG(m, ps), let Bμ be a pms × f (m)

EG (μ) incident matrix of the
†For integers i < j, [i, j] denotes the set of integers from i to j.
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μ-flats over points. We replace an (i, j)-th circulant matrix
πai, j (I) (i = 1, 2, . . . , γ, j = 1, 2, . . . , ρ) of M0 with a matrix
πai, j (Bμ), which can be obtained to right-shift the matrix Bμ
ai, j times. We denote the resultant γpms×ρ f (m)

EG (μ) matrix by
Mμ. LetMμ be an AC code whose codewords are column
vectors of Mμ, and then we have the following corollary.

Corollary 1: The AC codeMμ for a given EG(m, ps) has
(i) the code length γpms, (ii) the number of codewords
ρ f (m)

EG (μ), and (iii) the resilience � = min{γ−1, ps−1}. �

It follows from Corollary 1 that we can improve AC
codes which are constructed based on a QC-LD matrix by
using a Euclidean geometry EG(m, ps). Note that the code
length of M0 is not altered in this case. In particular, if
γ − 1 < ps, the AC codesMμ are always more efficient than
the conventional codeM0 with keeping the code length and
resilient. About the obtained AC codes based-on QC-LD
matrices, we can assert similar effectiveness mentioned in
Sect. 5.2.

We state some relationship between the conventional
AC code M0 and the proposed AC code Mμ for a given
EG(m, ps). Denoting the incident matrix of 0-flats (namely,
points) over points in EG(m, ps) by B0, we can see I = B0.
Therefore substituting μ = 0 in the matrix Mμ, we can obtain
the matrix M0. This fact implies that the conventional AC
codeM0 based on QC-LD matrix is an instance of the AC
codesMμ with μ = 0.

Using projective geometries PG(m, ps), we can obtain
a similar result as in Corollary 1. We only show a result
here.

Corollary 2: Assume that we allocate each column vector
of the incident matrix of μ-flats over points in PG(m, ps) to
a user’s codeword. This AC code has (i) the code length
γ(p(m+1)s−1)/(ps−1), (ii) the number of codewords ρ f (m)

PG (μ),
and (iii) the resilience

� =

{
γ − 1, if γ − 1 < (p(μ+1)s − 1)/(pμs − 1),
ps, otherwies.

Then, if γ − 1 < (p(μ+1)s − 1)/(pμs − 1), this code is also a
(γ − 1)-resilient AC code. �

As for the case of projective geometry, the code length
increases from an original QC-LD matrix.

6.2 Example of FG-AC Codes Based on QC-LD Matrices

As illustration of the obtained EG-AC codes based on QC-
LD matrices, we show some examples by using QC-LD
matrices constructed from Reed-Solomon code [2] in Ta-
ble 3. For a given GF(pms), (γ, ρ) QC-LD matrices with
2 ≤ γ ≤ pms − 1 and 1 ≤ ρ ≤ pms can be constructed.
We choose some γ and fix values of ρ as ρ = pms to make
the size of AC codes as large as possible. We show the loga-
rithm of the code size for M0 in the column of “log2 ρ fEG(0)”
and for Mμ∗ in that of “log2 ρ fEG(μ∗).”

Table 3 Examples of EG-AC codes based on QC-LD matrices; we set
γ = ps and ρ = pms for given EG(m, ps).

� (m, ps) N log2 ρ fEG(0) log2 ρ fEG(μ∗)

2 (3, 31) 81 9.51 11.63
(4, 31) 243 12.68 16.53
(5, 31) 729 15.85 22.92
(6, 31) 2187 19.02 29.31
(7, 31) 6561 22.19 37.25

3 (3, 22) 256 12.00 14.39
(4, 22) 1024 16.00 20.48
(5, 22) 4096 20.00 28.50

4 (3, 51) 625 13.93 16.56
(4, 51) 3125 18.58 23.59

Table 4 Examples of PG-AC codes based on QC-LD matrices; we set
γ = ps and ρ = pms for given PG(m, ps).

� (m, ps) N log2 ρ fPG(0) log2 ρ fPG(μ∗)

2 (3, 31) 120 10.08 11.78
(4, 31) 363 13.26 16.58
(5, 31) 1092 16.43 22.97
(6, 31) 3279 19.60 29.33
(7, 31) 9840 22.77 37.27

3 (3, 22) 340 12.41 14.48
(4, 22) 1364 16.41 20.50
(5, 22) 5460 20.41 28.52

4 (3, 51) 780 14.25 16.62
(4, 51) 3905 18.90 23.60

Similar to the results in Table 1, the constructed AC
codesMμ∗ have greater number of codewords than the base
AC codesM0, and their effectiveness becomes high with in-
creasing the dimension m of EG(m, ps). Moreover, it should
be noted that all the AC codesMμ∗ in Table 3 have higher
coding rate than EG-AC codes Bμ∗ of the same length in
Table 1. This reason will be discussed in the next section.

We show some examples of PG-AC codes based on
QC-LD matrices in Table 4. As shown in Corollary 2, al-
though the code length increases from an original QC-LD
matrix M0 in this case, we replace the pms × pms identity
matrix I in Eq. (9) with the f (m)

PG (0) × f (m)
PG (0) identity ma-

trix to construct a new QC-LD matrix for reference. We
show the logarithm of the code size for M0 in the column
of “log2 ρ fPG(0)” and for Mμ∗ in that of “log2 ρ fPG(μ∗).”
Note that the code length is N = γ(p(m+1)s − 1)/(ps − 1),
where (p(m+1)s − 1)/(ps − 1) expresses the number of points
in PG(m, ps). In Table 3, the constructed AC codes Mμ∗
have greater number of codewords than the base AC codes
M0, and their effectiveness becomes high with increasing
the dimension m of PG(m, ps).

6.3 Relation between Two Proposed Methods

We have proposed two explicit construction methods in
Sects. 5 and 6. Especially, as shown in Sects. 5.1 and 6.2, if
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we want to construct an AC code of N = pms and � = ps −1,
we have two options. That is, (i) to construct Bμ∗ from
EG(m, ps) and (ii) to combine M0 and Bμ∗ which are both
defined over GF(p(m−1)s).

We here compare these two constructions. From
Eq. (22), the number of codewords of an EG-AC code Bμ∗ is
f (m)
EG (μ∗) = O(N

1
4 (m+2+δ(m))). On the other hand, the number

of codewords of Mμ∗ is ρ f (m−1)
EG (μ∗) such that ρ = p(m−1)s

and μ∗ = �m−1
2 �. Let a function δ′(m) be

δ′(m) :=

⎧⎪⎨⎪⎩
5
m , for odd m,
4
m , for even m.

(25)

Then we have

ρ f (m−1)
EG (μ∗) = O

(
p

1
4 ms{m+4−δ′(m)})

= O
(
N

1
4 {m+4−δ′(m)}) , (26)

where the last equality is obtained by N = pms (see Ap-
pendix for the derivation). We see that ρ f (m−1)

EG (μ∗) >
O(N

1
4 {m+3}) for m ≥ 4, which is greater than f (m)

EG (μ∗). This
fact implies that if m ≥ 4, the AC codeMμ∗ is more effec-
tive than EG-AC code Bμ∗ . On the other hand, if (and only
if) m ≤ 3, Bμ∗ is more effective than Mμ∗ . From Eq. (26),
the second construction combining an QC-LD matrix and
an EG-AC code becomes highly effective with increasing
the value of m.

7. Comparison with a Previous Method

In this section, we compare the effectiveness of proposed
methods with the method of Kang et al. based on group-
divisible design [16], [17].

In [16], [17], the conventional condition of AC codes
has been also relaxed. In their relaxed condition, any code-
words have the equal Hamming weight k. The codewords of
an AC code based on group-divisible design can be divided
into some groups of the same cardinality. A codeword has
exactly one 1-component in common with other codewords
in the same group, and it has no 1-component in common
with codewords in different groups. Since these conditions
imply that any codeword has at most one 1-component in
common with other codewords, the conditions of AC codes
in [16], [17] are a spacial case of our relaxed condition in
Sect. 4 with t = 1.

In the code construction in [17], the code length is
N = pm where p is a prime and m ≥ 2 is a positive inte-
ger. The number of codewords is p2(m−1) and k = p. We
can easily check that the number of codewords is expresses
as O(N2− 2

m ). On the other hand, the proposed method
based on Euclidean geometry gives the number of code-
words O

(
N

1
4 (m+2+δ(m))

)
from Eq. (22). If we use the proposed

method based on QC-LD matrices combined with EG(m, s),
the number of codewords is O

(
N

1
4 (m+4−δ′(m))

)
from Eq. (26).

Note that both AC codes by the proposed methods can have
the same code length and resilience as those of the AC codes

by Kang et al. [17]. Therefore, for any m ≥ 3, we can show
that the AC codes by the proposed methods have larger cod-
ing late while the code length and the resilience are equal (if
m = 2, all methods give the AC codes with same parame-
ters).

8. Conclusion and Future Improvements

In this paper, for some class of AC codes proposed by
Trappe et al., two methods for increasing their coding rate
were proposed based on finite field arithmetics, while their
resilience is maintained. We showed examples of the AC
codes with the maximal number of codewords for a given
finite geometry. In the first method, the obtained AC code
can have the greater number of codewords than a conven-
tional AC code by Trappe et al. as the dimension m of a
finite geometry FG(m, p2) increases. Taking a similar ap-
proach to this construction method, other methods for con-
structing efficient AC codes based on QC-LD matrices were
proposed. In this method, although all the case does not nec-
essarily guarantee the same resilience, conditions on param-
eters which provides the same resilience were derived. Con-
sequently, we can construct a fingerprinting system which
can provide service of distributing a digital content for more
users, while keeping both the resilience and the distortion to
original digital contents.

Unfortunately, the codes obtained by the proposed
method have comparatively large code lengths, which im-
plies the distortion to the original content by these codes
might be large. An effective shortening method of the code
while the resilience is maintained should be devised. In this
paper, the resilience is guaranteed by assuming no noise se-
quence. The performance of the AC codes, where there oc-
curs a noise sequence, should be analyzed. An effective de-
tecting algorithm for the AC codes considered in this paper
is also needed.
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Appendix: Derivation of Eq. (26)

If constructing Mμ∗ from M0 and Bμ∗ defined over
GF(p(m−1)s) with γ = ps, the code length is N = pms, and the
number of codewords is ρ f (m−1)

EG (μ∗) such that ρ = p(m−1)s.
By substituting m with m − 1 in Eq. (21), we have

f (m−1)
EG (μ∗) = O

(
p

1
4 {(m−1)2+2(m−1)+(m−1)δ(m−1)}s)

= O
(
p

1
4 {m2−1+(m−1)δ(m−1)}s)

= O
(
p

1
4 {m2−mδ(m)}s) , (A· 1)

where the last equality can be obtained by the relation 1 −
(m − 1)δ(m − 1) = mδ(m). Therefore we have

ρ f (m)
EG (μ∗) = O

(
p(m−1)s p

1
4 {m2−mδ(m)}s)

= O
(
p

1
4 {m2+4(m−1)−mδ(m)}s)

= O
(
p

1
4 ms{m+4−δ(m)− 4

m })

= O
(
p

1
4 ms{m+4−δ′(m)}) , (A· 2)

where the last equality follows from Eq. (25). Since N =
pms, we obtain Eq. (26).
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